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About MEDIATOR 
 
 
MEDIATOR, a 4-year project coordinated by SWOV Institute for Road Safety Research, has 
come to an end after four years of hard work. The project has been carried out by a 
consortium of highly qualified research and industry experts, representing a balanced mix 
of top universities and research organisations as well as several OEMs and suppliers.  
 
The consortium, supported by an international Industrial Advisory Board and a Scientific Advisory 
Board, represented all transport modes, maximising input from, and transferring results to aviation, 
maritime and rail (with mode-specific adaptations). 
 

Vision 
Automated transport technology is developing rapidly for all transport modes, with huge safety 
potential. The transition to full automation, however, brings new risks, such as mode confusion, 
overreliance, reduced situational awareness and misuse. The driving task changes to a more  
supervisory role, reducing the task load and potentially leading to degraded human performance. 
Similarly, the automated system may not (yet) function in all situations. 
 
 
 

 
 
 

            The MEDIATOR system will constantly weigh driving context, driver state and vehicle automation status, while 
personalising its technology to the drivers’ general competence, characteristics, and preferences. 
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The MEDIATOR project aimed to develop an in-vehicle system, the Mediator system, that 
intelligently assesses the strengths and weaknesses of both the driver and the automation and 
mediates between them, while also taking into account the driving context. It assists the timely 
take-over between driver and automation and vice versa, based on who is fittest to drive. This 
Mediator system optimises the safety potential of vehicle automation during the transition to full 
(level 5) automation. It would reduce risks, such as those caused by driver fatigue or inattention, or 
on the automation side by imperfect automated driving technology. MEDIATOR has facilitated 
market exploitation by actively involving the automotive industry during the development process. 
 
To accomplish the development of this support system MEDIATOR integrated and enhanced 
existing knowledge of human factors and HMI, taking advantage of the expertise in other transport 
modes (aviation, rail and maritime). It further developed and adapted available technologies for 
real-time data collection, storage and analysis and incorporated the latest artificial intelligence 
techniques. MEDIATOR has developed working prototypes, and validated the system in a number 
of studies, including computer simulation, virtual reality, driving simulator and on-road studies. 
 
With MEDIATOR we further paved the way towards safe and reliable future vehicle automation that 
takes into account who is most fit to drive: the human or the system. 
 
https://mediatorproject.eu/ 
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Executive summary 
 
 
The objective of this work is to describe guidelines for measuring degraded human performance 
based on driver state and competences from a real-time driver monitoring perspective. The 
guidelines integrate state-of-the-art knowledge from the literature with knowhow from the industry 
and practical results from the Mediator project. The formulated guidelines are defined based on 
functionality, technological possibilities, safety relevance and feasibility.  
 
In summary, an ideal driver monitoring system should have the following general features: 
 

• Minimally obtrusive sensors. Camera-based systems have several advantages here, since 
they have the potential to capture rich information about humans, objects, and their 
interaction. Unobtrusive sensing is needed to facilitate high adoption rates, to avoid 
deactivation, and to avoid interfering with drivers’ operation of the vehicle. 

• Real-time operation and timely detections. Impairment detection, and subsequent 
interventions, have different demands on acceptable latencies. Detection of early signs of 
fatigue is not time critical (order of minutes) while severe fatigue, microsleep, and long off-
road glances are time critical (order of seconds or less). In some situations, discomfort can 
be detected offline several minutes in advance, for example when approaching harsh 
weather or a traffic jam. Proactive impairment interventions, in contrast to reactive 
detection/intervention, is favourable. This requires forecasts of drivers’ future readiness 
levels. 

• Robustness to environmental conditions. System performance should not be significantly 
influenced by environmental conditions such as traffic, landscape, weather, and darkness. 

• Automation level dependent. The drivers’ responsibilities change with the level of vehicle 
automation, which in turn affects the requirements for a driver monitoring system. As an 
example, continuous distraction detection is highly relevant in manual and assisted driving. 
In higher levels of automation, where non-driving related task engagement is allowed, it is 
sufficient to ensure that the driver is attentive in relation to transitions of control. 

• Situational awareness. A driver/vehicle-unit should have sufficient situational awareness to 
be able to drive safely. With higher levels of automation, the responsibilities for situational 
awareness are gradually shifted from the human to the vehicle. Similarly, to be able to 
provide relevant impairment detections, a driver monitoring system should also be 
situationally aware and take contextual factors into account. For example, fatigue warning 
systems would benefit from knowledge about sleep history and driving time, and distraction 
detection systems would benefit from knowledge about which areas in the surroundings 
that needs to be sampled to gain sufficient situational awareness. 

• Ecological validity. Final evaluations/testing of driver monitoring systems should be 
conducted in ecologically valid settings with naturalistically induced impairments. Lab 
testing can and should be used in earlier evaluation stages, for example, when testing if an 
eye tracking system provides high quality tracking throughout a broad range of the 
population. 

• Minimal intrusion on privacy. Driver monitoring systems should avoid privacy intrusions. 
For example, video data should be deleted continuously and should not be stored beyond 
what is needed for impairment detections.  
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Since MEDIATOR has focused on driver distraction, driver fatigue, and driver comfort, the 
guidelines are restricted to these three states. In addition to comfort, distraction, and fatigue, many 
researchers, legislators, developers, and users also mention sudden sickness and intoxication as 
important impairments. These impairments have therefore been covered as well in the state-of-the-
art review and in the interviews, but not in the actual guidelines. 
 
The goal of driver monitoring is to increase road safety. Achieving this goal depends not only on 
the performance of the driver monitoring system, but also on the intervention strategy and how the 
intervention is communicated to the driver. Guidelines on intervention strategies established in the 
Mediator project are described in van Grondelle (2023).  
 
Though the formulation of definitive operational guidelines for driver monitoring systems still suffer 
from a lack of knowledge, this should not prevent or delay the introduction and implementation of 
such systems. Instead, available technologies should be used to address and mitigate impairments 
to the extent possible, starting with severe behaviours such as incapacitation, alcohol intoxication, 
microsleeps, and long glances away from the road.  
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1. Introduction and general 
considerations 
Driving consists of a complex interaction of situational anticipation, information sampling, decision 
making, and action, where the driver interacts with the environment, with other road users and with 
the vehicle. The driving process is coordinated by complex interactions encompassing operational, 
tactical, and strategical abilities. If one or more of these elements are degraded in their functioning, 
the driver may be less safe and, thus, be unfit to drive. Driver state related factors that negatively 
impact performance are for example distraction, fatigue, intoxication, and sickness. Mood, 
emotions and (dis-)comfort can also have a negative safety impact, where anger, distress and 
discomfort can trigger unnecessary or unexpected actions by the driver. Since human errors and 
driver impairments are the leading contributors to vehicle collisions (Singh, 2015), active safety 
systems and vehicle automation has been put forth as the final fix to the shortcomings of human 
drivers. 
 
Bainbridge (1983) explained that “the more advanced a control system is, so the more crucial may 
be the contribution of the human operator”. Similarly, Parasuraman and Riley (1997) explained how 
humans often misuse, disuse, and abuse automation technology, and also argued that humans 
tend to be poor supervisors of automation. Indeed, we now see how (partial) automation can lead 
to driver fatigue, disengagement, reduced active participation, increased engagement with non-
driving related tasks, increased workload, and deskilling (Dunn et al., 2021; Feldhütter et al., 2019; 
Greenlee et al., 2019; Llaneras et al., 2013; Noble et al., 2021; Noy et al., 2018). 
 
Fully automated vehicles that can drive from A to B with no human intervention are yet not ready to 
be deployed on public roads. Meanwhile, a responsible driver must always be present, to monitor 
the performance of partial automation, or be ready to operate the vehicle in conditions not 
supported by the automation. Since humans are poor supervisors of automation (Parasuraman & 
Riley, 1997), another technical safety layer has been suggested, where the human driver is 
continuously monitored to ensure a sufficient level of fitness (Hayley et al., 2021; Hecht et al., 
2018). An issue here is that driver monitoring is difficult and available systems are facing 
challenges that are not easily overcome (Doudou et al., 2019; Koay et al., 2022; Koesdwiady et al., 
2017; Ortega et al., 2022; Perkins et al., 2022). Examples of why driver monitoring is difficult 
include inter- and intra-individual differences and context dependence, and especially in an 
automated driving setting, the need to predict the driver’s readiness to re-engage within the 
automated systems warning timeframe. 
 
The early work of Bainbridge (1983) clearly shows that new human factors related issues arise 
when automation is introduced. At the heart of the problem lies the fact that the things that can be 
automated are not necessarily the things that should be automated. It is important that we do not 
end up in an analogous situation with driver monitoring systems. By setting up requirements and 
guidelines based on actual needs rather than what is currently possible to measure, it might be 
possible to steer driver monitoring development in a direction where it makes a true difference for 
traffic safety.  
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2. Objective and framework 
The objective of this deliverable is to describe guidelines for measuring degraded human 
performance from a driver monitoring perspective. The main input comes from the state-of-the-art 
review that was carried out early in the project (Borowsky et al., 2020), from results on practical 
validity derived from MEDIATOR experiments (Athmer et al., 2023; Borowsky et al., 2023; 
Fiorentino et al., 2023), and from interviews with representatives involved in driver monitoring 
system development. These findings are then integrated to guide future driver-state and driver-
competence detection.  
 
A key component of the Mediator system is the driver monitoring system that is used to 
continuously monitor the abilities of the driver. Along with the automation monitoring system, these 
two components provide the information needed for the decision logic component to mediate 
control between the driver and the vehicle. In this deliverable, the proposed Safe by Design 
heuristic by Jannusch et al. (2021) will be adapted and used as a framework to identify abilities and 
limitations of driver monitoring systems, considering various types of driver impairments as well as 
different levels of automation. 
 
Driver fitness assessment in MEDIATOR focus on monitoring of Distraction and Fatigue. The 
project has also focused on Comfort since driver comfort is, next to safety, efficiency, social 
inclusion and accessibility, one of the main drivers of higher driving automation levels (ERTRAC, 
2022). The guidelines in chapter 4 encompass these three states. The preparatory work and the 
background information in chapters 2 and 3 have a wider scope, also covering sudden sickness 
and intoxication, but to a lesser extent.  

2.1. Driver impairment definitions  
Fatigue is here defined as a biological drive for recuperative rest (Williamson et al., 2011). Within 
MEDIATOR, the scope of the term encompass fatigue due to extended periods of high or low 
workload (task-related fatigue), and accumulated sleep debt, prolonged wakefulness, or troughs in 
the circadian rhythm (sleep-related fatigue). From a fatigue detection perspective, all forms of 
fatigue can be measured using the same methods. However, there are large differences in which 
countermeasures to deploy if fatigue is detected (May & Baldwin, 2009). Task related fatigue 
caused by high task load will benefit from increased automation and in-vehicle technologies that 
offset driver workload. Conversely, underload caused by monotonous conditions and highly familiar 
roadways should be countered by increasing the novelty and demand of the driving task. Sleep 
related fatigue can only be countered by recuperative sleep. 
 
Driver inattention can be defined as insufficient or no attention to activities critical for safe driving 
(Regan et al., 2011) or as when insufficient information is sampled to be able to form and maintain 
a mental representation of the situation (Kircher & Ahlstrom, 2016). Whereas all forms of 
inattention are potentially detrimental to driver fitness, the focus within MEDIATOR is primarily on 
visual distraction, operationalized as looking away from the road for too often or for too long.  
 
Ensuring a comfortable and positive driving experience is considered a fundamental prerequisite 
for the acceptance and usage of automated functions (Bellem et al., 2018). In MEDIATOR, the 
term comfort encompasses traditional comfort aspects such as noise, vibrations or sitting comfort, 
as well as additional factors such as apparent safety, motion sickness, trust in the system, 
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controllability, familiarity of vehicle operations, and transparency of system states and actions 
(Beggiato, 2015; Elbanhawi et al., 2015). 

2.2. Driver monitoring systems 
The purpose of driver monitoring systems is to assess driver fitness. This is a complex construct 
that depends on various psychological and physiological states. Major contributing factors, as 
indicated by research, policy makers and the industry alike, are inattention, fatigue, intoxication, 
and sudden sickness. These factors are latent constructs, referring to the fact that they reflect 
theoretical aspects of the human psychological/physiological state that are not directly observable, 
but must be inferred from manifest, observable variables. The operationalization of each construct, 
as well as their interrelations and relation to safety, are matters of active investigation. 
Nevertheless, to visualize the relations addressed in this deliverable and to facilitate the 
formulation of guidelines, a simplified outline of these relations is made in Figure 2.1. Variables 
represented in circles are latent constructs and variables in squares are observable manifestations 
of these constructs that can be exploited by a driver monitoring system. 
 
 

 

Figure 2.1: Relations between latent factors (circles) and manifest, observable factors (squares), as they are considered in 
this deliverable. Fitness depends on various latent constructs that reflect certain driver states. Within MEDIATOR, 

the factors fatigue, distraction, and comfort were monitored. In the project, fatigue was inferred from heart rate and 
camera data, distraction was inferred from engagement in non-driving related activities (NDRA) and gaze direction 
and comfort from facial action units. Intoxication and (sudden) sickness are only considered in the literature review.  

 

2.3. Driver monitoring system ratings and regulations 
Official regulations and guidelines for driver monitoring systems have started to emerge but are 
typically limited to specific automation systems. Regulations are system design and performance 
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evaluation criteria that are mandatory for a vehicle to gain type approval. Some regulations are 
already in place, but these are specific to certain assistance functions and note that driver 
monitoring is required, without specifying details. For instance, UNECE regulation 157 on 
Automated Lane Keeping Systems (addendum to 1958 Agreement on harmonization) states that 
“The system shall comprise a driver availability recognition system”, and that “The system shall 
detect if the driver is attentive.” It specifies that this shall be achieved, for instance, by detecting if 
the driver is present in a driving position, if the safety belt of the driver is fastened, and if the driver 
is available to take over the driving task. However, details on the actual implementation of the 
system and evaluation of its performance are not provided. Similarly, the EU General Safety 
Regulation 2019/2144 requires driver availability monitoring systems in automated vehicles on all 
new type approvals from July 2022. Further, the EU General Safety Regulation 2019/2144 states 
that "Motor vehicles shall be equipped with … driver drowsiness and attention warning systems, 
and advanced driver distraction warning systems”, but does not specify how this should be 
implemented. Some more specific criteria are provided in related regulation EU 2021/1341 on 
Driver Drowsiness and Attention Warning systems, where it is suggested that drowsiness may be 
detected from control inputs and computer vision systems, although manufacturers are left free to 
choose any specific implementation. Proof must be provided that the implemented system meets 
minimum requirements in terms of correct classifications (i.e., sensitivity) of drowsiness, on the 
basis of empirical data collected from human participants while following a proposed test-protocol. 
An update to the EU general safety regulations that targets distraction (Advanced Driver Distraction 
Warnings) is currently planned for 2024.  
 
Euro NCAP will develop an assessment protocol (foreseen for 2023) that considers driver 
monitoring (Occupant Status Monitoring systems) for fatigue and distraction. Because the Euro 
NCAP rating system is indicative of the safety features augmenting minimal requirements through 
regulations, these may be considered guidelines. The assessment by Euro NCAP will revolve 
around (i) how reliably and accurately the status of the driver is detected and (ii) what action the 
vehicle takes based on the information. 
 

2.4. Automation aspects of driver monitoring 
There are different ways to define the capabilities and responsibilities of an automated vehicle. The 
commonly referred to standard J3016 suggests six levels of driver assistance technology (SAE, 
2021). To understand their structure, it is important to know that automated vehicles are assumed 
to operate only in a pre-defined situation/environment. This environment is called the systems’ 
Operational Design Domain. Level 0 equals unassisted manual driving. Levels 1–2 are assisted 
driving where the human driver still is responsible. Levels 3 – 4 represents piloted driving where 
the automated system is responsible within a specific domain and a human driver is responsible for 
all driving outside this domain. Level 5 is robot taxi; no driver involvement is needed at any point.  
 
MEDIATOR addresses automation on SAE levels 0 – 4, using the terminology defined in Table 2.1. 
A key point within MEDIATOR has been to adopt a user perspective on automation. Where SAE 
automation levels align with technical possibilities of automation, MEDIATOR automation levels are 
based on the driver’s responsibilities and affordances. To illustrate, whereas SAE level 4 
represents a level of automation that allows a driver to be out of the loop and that also ensures 
safe handling of situations where the automation cannot adequately perform the driving task, it 
does not consider how long one can be out of the loop. In MEDIATOR, the Time-to-Sleep mode is 
defined from a user perspective: it considers whether the driver can stay out of the loop for a short 
while or for a long time.   
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Table 2.1: Automation levels addressed in MEDIATOR (OEDR: Object and Event Detection and Response) 

 driver supported automated driving 
SAE 0 1 2 3 4 5 

Automation 
responsibilities 

warnings and 
momentary 
assistance 

lateral or 
longitudinal 

support  
lateral and 

longitudinal 
support  

automated functions drive the vehicle 
within the defined operational design 

domain 
automated driving 

under all 
conditions 

Human 
responsibilities driver must constantly supervise driver is not required to drive, but must 

take over upon request 
driver is a 
passenger 

Euro NCAP  Assisted (shared control) Automated (vehicle in control) Autonomous 
Automation 

responsibilities  OEDR and other supportive tasks OEDR and driving. Vehicle has full 
responsibility full control 

Human 
responsibilities  OEDR and driving. Driver is fully 

responsible. No safe transfers 
Driver can do non-driving related tasks, 

but must take over upon request 
driver is a 
passenger 

Mediator 

 Continuous mediation Driver standby Time-to-Sleep  

 
drivers supported by automation but are 

responsible and must monitor 
surroundings and automation. 

driver must take 
back control upon 
request (order of 

seconds) 

driver must take 
back control upon 
request (order of 

minutes) 
 

HMI 
Manual Assisted Piloted  

non-automated, 
driver is in full 

control 
drivers are not fully disengaged and must 
maintain certain responsibilities. This can 

be steered towards a monitoring task. 
drivers monitor while automation 

performs driving tasks  

 

2.4.1. Implications of automation on distraction 
The purpose of automation is to improve safety and comfort for a vehicle’s driver and passengers. 
One of the ways vehicle automation may contribute to this goal is by reducing driver workload. 
However, improvident minimization of workload may paradoxically induce a state of cognitive 
underload, which causes both the mind to wander (Körber et al., 2015), and increases the 
tendency to engage in non-driving related tasks (Solís-Marcos et al., 2018); thereby actually 
provoking distraction and reducing situational awareness (Saxby et al., 2013). Moreover, vigilance 
tasks are known to be particularly demanding and may therefore also promote fatigue (Miller et al., 
2015).  
 
Drivers experienced with Continuous mediation engage in non-driving related tasks more 
frequently (Dunn et al., 2021). They also spend more time with their eyes off the forward roadway 
when driving automation systems are active, with more frequent and longer duration non-driving-
related task glances (Noble et al., 2021). These results suggest that drivers trust Continuous 
mediation systems to compensate for their distracted driving behaviours. 
 

2.4.2. Attention requirements on the driver per automation level 
For consistency within MEDIATOR, we here consider automation modes as defined within the 
project (see Table 2.1). However, in cases where these modes cover different aspects of the 
driving task as per SAE levels, we will consider whether and how these differences affect 
attentional requirements and affordances for the driver. 

2.4.2.1. Continuous mediation 

As per Table 2.1, the MEDIATOR Continuous mediation automation mode covers SAE levels 1 
and 2. These levels differ in terms of the extent to which the driving task is transferred to the 
vehicle, and thereby also differ in the attentional requirements for the driver. In absence of 
automation (i.e., manual driving, or SAE level 0), a driver is in active control of the vehicle. The 
driver is required to provide lateral and longitudinal control of the vehicle, and to continuously 
monitor for potential hazards. This involves perception and recognition of road conditions as well 
as the density and behaviours of other road users, and projection, i.e., prediction of situations that 
may unfold on the basis of these traffic states and knowing how to properly react to them (Fisher et 
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al., 2016; Horswill & McKenna, 2004; Yamani et al., 2016). Occasional monitoring of vehicle state 
variables via information systems is allowed and required to maintain situational awareness. 
Drivers are not allowed to engage in activities other than driving, except for minimally obtrusive 
acts such as hands-free calls and adjustments of vehicle settings. For low levels of automation, the 
vehicle takes care of the lateral or longitudinal control (SAE level 1) or both lateral and longitudinal 
control (SAE level 2) for the driver. Under these conditions the drivers are alleviated from 
performing these control tasks themselves, but they are still required to continuously monitor the 
performance of the automation, along with performing their main task of monitoring the road 
environment for potential hazards as well as monitoring vehicle state. Thus, (part of) the control 
task is transferred to the vehicle, whereas the driver is required to remain vigilant and situationally 
aware, and must always be able to take immediate control (de Winter et al., 2016). Because 
advanced automation functionalities within the Continuous Mediation mode increasingly convert 
the driving task into an attentionally demanding vigilance task, this mode may set the most 
stringent requirements in terms of driver monitoring system, as automation should never be 
detrimental to safety.  

2.4.2.2. Driver standby 

The Standby mode is the first level of automation where the driver is completely alleviated from the 
driving task, albeit only for unforeseeable amounts of time – drivers must therefore maintain 
sufficient situation awareness and be ready to take over the driving task from the automation within 
a few seconds’ notice. Challenges here are related to regaining driver fitness and balancing the 
time until either the automation or the driver becomes (un)fit, making sure always one is fit enough 
for the driving task.  

2.4.2.3. Time-to-Sleep 

In the Time-to-Sleep mode, the driver is completely alleviated from the driving task given that the 
vehicle is within the automated systems operational design domain (such as highway driving). This 
implies that the amount of time the driver is not required to intervene can be confidently estimated. 
In other words, drivers can be safely out of the loop for long periods of time and truly immerse 
themselves in non-driving related tasks. Drivers are thus free to engage in any activity the 
environment allows and are even free to fall asleep. Consequently, driver distraction monitoring 
systems are not required, except to make sure that the driver is attentive when control is 
transferred back to the driver. Challenges in this level of automation are thus to bring the driver 
back into the loop after complete disengagement and to predict when this will be required 
sufficiently long in advance for drivers to be ready to take over control when they are required to do 
so. This is primary related to fatigue, but also to the type of activity that the driver may be 
immersed in. Transfers of control should allow enough time to safely put away computers, books, 
food etc.  

2.4.3. Implications of automation on fatigue 
The level of automation has different implications on fatigue (Ahlström et al., 2023). In manual 
driving (SAE level 0), fatigue commonly arises during night-time or in the early morning hours. It 
can also appear after too many uninterrupted hours behind the wheel or after extended periods of 
high or low workload (Williamson et al., 2011). Assisted driving (SAE levels 1–2) has the potential 
to reduce fatigue caused by high workload, at least to the extent the driving task itself is causing 
the overload. However, since the driver in that case shifts from driving to monitoring, levels of 
fatigue may then instead increase due to boredom and/or exhaustive attentive monitoring without 
an active task. With more sophisticated and reliable driving automation, it thus becomes harder for 
a human driver to maintain the vigilance needed to monitor both automation and roadway 
(Bainbridge, 1983; Carsten & Martens, 2019; Noy et al., 2018). 
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An effective countermeasure for task-related fatigue is to do something else for a while. In driving, 
this becomes feasible during piloted driving (SAE levels 3–5) and can be used as a 
countermeasure to overload (relieve the driver from the driving task) as well as to underload (allow 
the drier to rest for a while). However, in SAE level 3, the human must remain alert enough to be 
able to resume manual driving with short notice. The real game changer from a fatigue point of 
view is therefore when SAE levels 4 and 5 systems are introduced. These will allow a travelling 
human to sleep, recover and recuperate while on the move. As such, high-level automation will 
facilitate a truly effective countermeasure for fatigue, given that sleep inertia issues can be 
managed.  

2.4.4. Alertness requirements on the driver per automation level 
2.4.4.1. Continuous mediation 

In Continuous mediation, the requirements on the driver are the same as when driving manually, 
i.e., to always be alert.  

2.4.4.1. Driver standby 

In Driver standby, a takeover request may come with short notice, so the requirements on the 
driver are like when driving manually. The driver has no responsibilities of the driving while in 
automated mode. The short take over time (several seconds) allows rest and recovery, which can 
be beneficial in terms of task related fatigue. However, it does not allow for sleep and recuperation 
since it takes too long to get back in the loop.  

2.4.4.1. Time-to-Sleep 

In Time to Sleep, where the take over time horizon is longer (several minutes), the requirements on 
the driver are relaxed. Here, the only constraint is that the driver must be able to resume control of 
the vehicle with a few minutes notice. This allows for true recuperation via actual sleep. Note that 
the requirements on the vehicle increase as the requirements on the driver are relaxed. The 
vehicle must not only ensure automation fitness within predefined operation design domain, but it 
must also verify that the driver is attentive and physically positioned to drive before the actual 
transfer of control takes place. The latter entails a wakeup procedure, if needed, and a safe stop 
procedure, if the wakeup call is not enough.  
 
In full automation, no fatigue detection is needed. Here the driver is never in control, and becomes, 
in effect, a passenger of the vehicle.  

2.4.5. Implications of automation on driver comfort 
Ensuring a comfortable and positive driving experience is a prerequisite for the acceptance and 
usage of automated functions. Driver comfort is also a selling point for vehicle manufacturers as it 
improves well-being and user satisfaction. By having less to no control of the driving task, 
automated vehicle users will be less able to predict upcoming driving manoeuvres and associated 
comfort relevant parameters (e.g., distances to other vehicles, acceleration rates), which might 
result in in an unpleasant automated driving experience. Thus, next to traditional comfort aspects 
such as noise, vibrations and sitting comfort, additional comfort aspects are discussed in 
automated driving settings, such as apparent safety, motion sickness, system trust, controllability, 
familiarity with vehicle operations as well as mode awareness (Beggiato, 2015; Domeyer et al., 
2019; Elbanhawi et al., 2015). As such, maintained driver comfort is an important ingredient when 
setting up a functional driver/vehicle unit collaboration, where both are aware of each other’s 
limitations, strengths and current states and can act accordingly (ERTRAC, 2022; Klien et al., 
2004). 
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It is assumed that automated driving has the potential to be more efficient, more environmentally 
friendly, and safer than manual driving. Specifically, it is expected to decrease traffic congestions, 
fuel consumption and emissions as well as the number of crashes by compensating for human 
errors (ERTRAC, 2022). However, to exploit these potentials, users need to accept and activate 
driving automation as often as possible. Based on driving fitness, comfort and preferences in a 
certain context, the vehicle could be set up to actively propose automation features as a service to 
the driver. An example use case that has been investigated in MEDIATOR is when approaching 
and driving in traffic jams, a scenario which is associated with frequent rear-end crashes, and 
where drivers would generally prefer automation instead of driving manually (see Mediator 
Deliverable D1.2; Borowsky et al., 2020). To exploit these potential safety and comfort benefits of 
automation in (and even before) reaching traffic jams, the driver/user needs to be aware that such 
a situation is upcoming and whether automation is available at this specific moment. This is a 
feature that Mediator could offer by actively proposing automation features “at the right time”. 
 
Next to comfort and safety aspects, the active proposal of vehicle automation features could tackle 
the problems that a great proportion of drivers are unaware of having advanced driver assistance 
systems in their vehicles, and that they disuse/misuse or demonstrate misperceptions about what 
the system can and cannot do (McDonald et al., 2018). Therefore, potential safety effects of 
assistance features are diminished. In addition, unnecessary interventions by the driver due to 
uncomfortable or unexpected vehicle operations (e.g., if apparent safety is perceived as 
compromised) could lead to safety-critical and unnecessary takeover situations (Hergeth et al., 
2017; Techer et al., 2019). Detection of comfort issues could thus allow for adapting automation 
features such as driving style aspects (such as distance to vehicle ahead and lateral position) 
and/or information presentation with the overall aim to prevent disengagement of automation or 
dangerous and unnecessary takeover situations. Because driving comfort is primarily related to 
dynamic driving situations, constant comfort evaluation is necessary to prevent discomfort. 
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3. Capabilities and limitations of driver 
monitoring systems 
This chapter describes capabilities and limitations of driver monitoring systems. The content is 
based on the state-of-the-art review conducted early in the project and results from the project 
experiments. To make sure that the information is up to date, the state-of-the-art has been 
summarized and updated. A series of interviews/discussions with representatives from the industry 
(driver/occupant monitoring companies, tier 1 suppliers, original equipment manufacturers, and test 
organisations) was also conducted to account for some of the hidden knowledge that is sometimes 
unaccounted for in the scientific literature. 
 

3.1. Results from the literature 
Driver monitoring systems are being deployed at an increasing rate worldwide, with installation 
rates estimated to increase from 1% in 2019 to 71% by 2026 (Barnden, 2019). This rapid increase 
is driven by regulatory bodies and testing organisations, and by the increasing automation of new 
vehicles and the need to ensure the safety of both driver and surrounding road users. Driver 
monitoring has an importand role to play for managing the human-machine interface and to 
ensuring operator engagement and safety during (automated) driving, but such applications areas 
require systems that are robust, reliable, and accurate.  
 
Hermens (2020) reviewed about 100 fatigue and distraction detection systems. Each system was 
rated on eight criteria: validity, intrusiveness, availability, robustness, sustainability, acceptability, 
cost, and compatibility with other devices in the vehicle or used by the driver. Her conclusion was 
that no single system stands out on all criteria, and for sufficient monitoring of fatigue and 
distraction, a combination of systems or system features is needed. Adding alcohol intoxication 
would likely add yet another system. 
 
Of the eight criteria, validity and intrusiveness/acceptability are essential for meaningful driver 
monitoring. The system must be used by the drivers, and it must be capable of measuring the 
impaired state sufficiently well. In this respect, it is not possible to rely on a system requiring the 
driver to wear for example a pair of glasses or a head band with dry electrodes. Neither is it future 
proof to rely on vehicle control measures such as lateral variability since modern assistance 
systems and/or automated functions often affect or even take over lateral and longitudinal control 
of the vehicle. For the application at hand, these constraints effectively limit the range of plausible 
driver monitoring systems to those based on direct and unobtrusive sensors.  
 
There are some general limitations to minimally intrusive systems such as camera-based solutions: 

• Lighting conditions: There are frequent and sudden variations of lighting in real-life driving. 
These changes happen quickly and depend on daytime (day/night), weather, driving 
environment (streets lined with trees, driving under a bridge) and artificial light (headlights, 
street lighting). Infrared cameras with corresponding illumination mitigate some of the 
issues, but not all. For example, squinting in strong sunlight causes the lower eyelid and 
eyelashes to occlude the pupil partially or fully, making it difficult to track the eyes.   

• Camera view occlusions and hand deformation: Various facial occlusions can occur due to 
face masks, hoods, hand activities, glasses, and phones or laptops. The latter is especially 
relevant in vehicles with automated driving functionalities. Also, detection and tracking of 
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hands for recognition of driver distraction actions is a challenging problem. By including 
such garments/appearances in the training set when developing the systems, driver 
monitoring suppliers now manage such situations quite well, but certain lenses and IR-
blocking sunglasses are still problematic.  

• Variety of people: The system should work on all individuals throughout several ethnicities, 
genders, and age ranges. Developers are trying to take bias out of face and eye tracking 
systems, and it is working quite well, but nonconformity to stereotypes makes it difficult to 
cover all corner cases. 

 
Driver monitoring research can essentially be subdivided in three branches – a sensor branch, a 
feature extraction branch, and a driver state assessment branch. 
 
The sensor branch aims to provide high quality data for the latter stages. This includes minimally 
obtrusive physiological measurement sensors based on optical, capacitive sensors, magnetic 
induction, radar, laser, pressure sensors and strain-gauge sensors (Leonhardt et al., 2018), and 
behavioural measurement sensors typically based on cameras in the visible light, near-infrared 
light or far-infrared light frequency range, including depth sensing and stereo-cameras. The 
wavelength of a camera-based driver monitoring system is typically either 850nm or 940nm. While 
both can be used in darkness, the 940-nm wavelength is often preferred due to its invisibility to the 
human eye and its fewer interferences from the natural environment. Solar IR levels at 940nm are 
less than half compared to 850nm due to atmospheric absorption (Li et al., 2022). It is also 
common to predict the driver’s state using vehicle measures based on especially lateral control (Liu 
et al., 2009), but since MEDIATOR focus on vehicle automation, this aspect will not be included in 
this report. 
  
The feature extraction branch aims to extract vital signs, physiological indictors, facial features, 
head pose, gaze direction, eyelid opening or non-driving related activities (NDRA) from data/video 
streams. This branch of research is prospering thanks to recent achievements in machine learning, 
including deep learning, and the availability of open-source algorithms and pre-trained neural 
networks for facial feature detection and gaze estimation (Wang et al., 2018). This has led to 
improved eye/head tracking performance and higher detection rates of non-driving related activities 
such as mobile phone usage, with mean accuracies well above 90% (Kashevnik et al., 2021). 
 
Temporal context can improve detection performance compared to frame-based methods, by 
exploiting temporal information and frame content from several sequential frames (Moslemi et al., 
2021). This step typically encompasses a few frames and should not be confused with longer-term 
dependencies in the data, such as the process of slowly becoming more fatigued, or of engaging 
and disengaging from the driving task while performing a non-driving related activity (Lee, 2014). 
 
The third branch, driver state assessment, will be covered in the upcoming sections. 
 

3.1.1. Driver distraction monitoring  
Technically, classifications of visual distraction can be obtained via the following process: (1) 
obtaining sensor readings, i.e., camera images, (2) a feature-extraction stage where image 
processing is performed to obtain estimates of gaze direction and recognition of NDRAs, and 
subsequently (3) a classification step where the obtained information is passed to the algorithm 
that uses the information to generate actual classifications of driver distraction. The first attention 
monitoring or distraction detection algorithms were based on the notion that as soon as the gaze is 
directed away from forward or the driver is engaged in a non-driving related task, this immediately 
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leads to “distraction”. This goes hand in hand with the driver distraction definitions stating that a 
shift of attention to anything not relevant for driving immediately equals distraction, regardless of 
the outcome of the situation (Foley et al., 2013). As many developers have realised, these 
demands on the driver are unreasonably strict and lead to many false distraction detection events. 
Real-world real-time algorithms therefore give the driver some leeway by granting a certain amount 
of looking-away time. In practise, this is implemented by measuring the time spent looking away 
from the forward roadway. Common thresholds for the time that it is allowed to look away are for 
example 3 seconds as suggested in Euro NCAP’s safe driving assessment protocol (Euro NCAP, 
2022). Given that 3 seconds can be a very long time, depending on the driving context, these 
thresholds are clearly set to strike a balance between false alarm rate and detection accuracy. 
There is no explicit theoretical motivation why 3 seconds is a good choice. A theoretically more 
appealing threshold would be to let it vary with situational complexity. 
 
The fact that attention monitoring or distraction detection algorithms do not take situational 
complexity into account is a general concern. And it does not only apply to the temporal threshold. 
It also applies to the definition of “away from forward”. Typically, this region is defined as a static 
area of interest defined in a coordinate system that is fixed within the interior of the vehicle. This 
fixed definition of straight ahead is problematic since it does not allow the driver to look sideways 
when going through intersections, or to monitor the far end of sharp curves. Minor workarounds 
have been suggested, such as in the AttenD algorithm (Ahlstrom et al., 2013), which has a built-in 
mechanism for acknowledging the necessity of mirror and speedometer glances, or in the modified 
percent road centre algorithm, where the road centre region is expanded to the left or right 
depending on the curvature of the road (Ahlstrom et al., 2011).  
 
It should also be noted that inferences of distraction based on gaze direction are inherently 
uncertain (Ahlström, Kircher, et al., 2021). First, eye trackers only measure where and for how long 
we look in a certain direction or at a certain target. It is not a direct overt measure of visual 
attention, and neither does it measure the purpose of the glance or what information that reaches 
the brain. Second, driving relies heavily on peripheral vision to acquire visual information, and all 
this information is unaccounted for when only considering gaze directions. Third, it has been shown 
that not all foveated information is cognitively processed. And finally, eye movement data do not 
provide an easy way to determine whether the sampled information was relevant, necessary, and 
sufficient for the driver in the current situation. Considering these limitations, it is clear that driver 
distraction monitoring should not be based on single foveations, without also considering glance 
history and the present traffic situation.  
 
Given the advancements in environmental sensing in combination with theoretical developments in 
the definition of road user attention, context-aware algorithms that requires glances towards pre-
defined target areas, which are identified by a combination of infrastructure and priority rules, have 
started to appear. Indeed, in a revised version of the above-mentioned AttenD algorithm (Ahlström, 
Georgoulas, et al., 2021), distraction is considered a multidimensional problem, represented by a 
number of separate buffers that may each deplete or restore at different rates, depending on 
situational context. However, context-aware distraction detection is a new field and currently in the 
development/research phase.  
 
Another approach to distraction detection is based on driver activity recognition, targeting for 
example phone use by explicitly detecting mobile phones in the camera image (Moslemi et al., 
2021). However, engagement in a non-driving related activity does not necessarily mean that the 
driver is inattentive, so there might be issues related to acceptance and compliance.  
 



 

MEDIATOR | Deliverable D4.3 | WP4 | Final 14 

In addition to visual distraction, there are also other forms of inattention such as cognitive 
distraction and mind wandering. A typical indicator of cognitive distraction is a narrowing of visual 
scanning (Victor et al., 2005), or a lack of situational awareness, which can be measured via 
frequent misses of relevant objects in the context-aware visual distraction detection algorithms 
mentioned above. Cognitive distraction and mind wandering are difficult to induce, detect, and 
verify (Kotseruba & Tsotsos, 2022).      
 

3.1.2. Driver fatigue monitoring 
Non-obtrusive fatigue detection is usually based on heart rate metrics or on metrics extracted from 
the driver’s appearance such as frequent blinking, closed eyes, yawning, and nodding. Eye, mouth, 
and head features are considered to be the most effective for estimating fatigue (Kotseruba & 
Tsotsos, 2022).  
 
The parasympathetic influence when falling asleep slows down the heart and make its beating less 
regular. At the same time, the sympathetic nervous system is activated to resist falling asleep while 
driving (Vicente et al., 2016). These phenomena can be quantified using various heart rate 
variability metrics. However, both environmental factors, intra-individual time-varying differences as 
well as inter-individual differences obscure the relationship between heart rate variability and 
fatigue, which leads to inconsistent findings (Lu et al., 2022). 
 
Eye strain, difficulty focusing, heavy eyelids and difficulties keeping the eyes open are other signs 
of fatigue. These features can be extracted from video data via a series of processing steps 
including face detection and tracking, facial landmarks detection, eyelid detection, and head 
dropping, mouth drooping and yawning detection. Eye features (blinks and closures) are further 
processed into standard fatigue measures such as percentage of eye closure and blink frequency 
(Albadawi et al., 2022). The long-term temporal aspect is crucial for fatigue detection why 
indicators such as slow blinking and yawning are often aggregated over several minutes across 
time (Bakker et al., 2021).  
 
Many research papers show promising accuracies well above 90% (Albadawi et al., 2022). 
However, commercial systems seem to have difficulties achieving high sensitivity and specificity at 
the same time (Cori et al., 2021). For example, one of the most well-validated fatigue detection 
systems on the market has a sensitivity of 23% and a specificity of 96% when relating fatigue 
detections to lane departures (Shekari Soleimanloo et al., 2019). Thus, while the cautionary alarm 
produces few false positives, the proportion of missed events is concerning. Similarly, despite 
being a strong indicator of driver fatigue for highly averaged data, the commonly used percentage 
of eyelid closure fails to detect fatigue at finer temporal resolutions as well as on an inter-individual 
level (Golz et al., 2010; Trutschel et al., 2011). Combining multi-modal metrics and a global 
context, with additional features for continuous driving time, temperature, current time, and sleep 
duration may be a way to improve fatigue detection performance (Qian et al., 2021). Another 
approach to improve the performance of fatigue detection systems is to use personalised 
algorithms. The potential gain is large since between-individual phenotypic factors account for 50–
95% of the variance (Yamazaki & Goel, 2020), and performance typically increase with about 20% 
when using personalised algorithms (Bakker et al., 2021). 

3.1.3. Comfort monitoring 
In empirical research, subjective measures of (dis)comfort are still the gold standard, typically by 
means of questionnaires (Anjani et al., 2021) or by continuous monitoring using measurement 
devices actuated by experiment participants when they experience discomfort. However, in 
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everyday use of automated vehicles these methods are subjective and obtrusive, and there is 
desire to get more objective human comfort measures that can be assessed by sensors in real-
time. Current approaches typically estimate comfort based on emotion or stress indicators. 
Examples include various physiological measurements such as heart rate, heart rate variability, 
galvanic skin response, pupillometry, blood oxygen level saturation, electromyography, 
electroencephalography, seat pressure distribution, and postural analysis (Ayaz et al., 2012; 
Beggiato et al., 2018; Ikeda et al., 2018; Tan et al., 2008).  
 
Vehicle accelerations and behaviours (de Winkel et al., 2023; He et al., 2022) may impose physical 
discomfort and cause motion sickness, which may be inferred from expressions such as yawning, 
from pallor and from skin conductance. A sensitivity profile could be established, and predictions 
could be made for individual drivers, possibly incorporating knowledge of the route and vehicle 
accelerations (Irmak et al., 2022).   
 
Facial expression recognition is a promising technique for estimating emotional states. Real-time 
facial expression recognition is typically based on automatic facial action unit analysis (Zhi et al., 
2020). Even though action unit analysis only reflects changes in facial appearance, and not the 
expression/emotion per se, combinations of specific action unit changes can be used to infer 
particular emotional states (Ekman & Friesen, 2003). Automatic camera-based approaches have 
been presented (Bryant & Howard, 2019; Ko, 2018), but one must be aware that a person's intent 
goes beyond their facial expression. Individual differences in the quality and quantity of facial 
expressions obfuscates the relationship between action units patterns and distinct emotional 
states, and so does ambiguities such as contextual clauses (irony/sarcasm), and socio-cultural 
context (Barrett et al., 2019). Importantly, facial emotion recognition does not explain the trigger of 
the emotion, which would require information fusion with systems for environmental sensing, where 
the triggering event may even have occurred in the past.  
 
Discomfort may also be inferred from situations that drivers find uncomfortable. Mediator 
Deliverable D1.2 (Borowsky et al., 2020) presents an overview of potentially uncomfortable driving 
situations, including the expected probability for a decrease in comfort, the probability to get timely 
information about these situations, and the possible time span for detection in advance. Using a 
lookup table to predict discomfort has its limits. Generalisability to situations not included in the 
table is limited, unexpected changes in drivers’ comfort cannot be covered, and the expected 
probabilities listed in a lookup table may not work well for the individual driver. 

3.1.4. Intoxication monitoring 
There are five major categories of alcohol intoxication sensing approaches (Paprocki et al., 2022): 
breath alcohol devices, bodily fluid testing, transdermal sensors, optical techniques, and indirect 
estimates of intoxication based on physiological parameters or behaviour. The gold-standard for 
measuring alcohol is through gas chromatography, however, breath alcohol sensors are also 
reliable and are used in ignition interlock devices and for law enforcement. A disadvantage is that 
these sensors require regular maintenance, and that they only make one measurement.  
 
Indirect estimates based on camera feeds has the potential to continuously monitor the driver’s 
intoxication level. The estimate is based on the finding that alcohol impairment affects oculomotor 
control by decreasing the velocity and accuracy of glance behaviours while increasing the number 
and duration of fixations (Garrisson et al., 2021; Maurage et al., 2020; Silva et al., 2017). Koch et 
al. (2023) puts together these results by fusing various eye and head movement data in an attempt 
to classify drunk driving based on driver monitoring cameras. While the results are promising, there 
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is still some way to go before the accuracy and reliability is good enough, and the technique must 
also be validated on a larger population.  
 

3.1.5. Sudden sickness  
Sudden sickness is an umbrella term that covers a variety of conditions (diabetic shock, cardiac 
events, seizures, etc.). Common for these severe states is driver incapacitation. Vital signs can be 
monitored with wearables, and to some extent also with no-contact sensors, but the sensors are 
sensitive to motion artifacts (Leonhardt et al., 2018). Instead of monitoring vital signs, it is 
reasonable to regard sudden sickness as a period of lack of response (Fredriksson et al., 2021). 
This may be detected indirectly, for instance from uncorrected fatigue or distraction warnings. 
 
Whereas some conditions that cause a driver to be suddenly unavailable, such as an epileptic 
seizure, other forms of sickness may develop more gradually. An example is motion sickness. 
Mathematical models are currently under development that can predict future motion sickness with 
a reasonable accuracy. These models can make predictions using present observations on, for 
example, pallor, gasping behaviour, and manifestations of physiological discomfort such as 
postural changes, while also taking into account knowledge of individual sensitivities and route 
planning information (Irmak et al., 2022). If a risk of, or early stages of, motion sickness is/are 
detected, this may be put to use in automation. Decision logic may for instance propose to the 
driver to take over the driving task, as active involvement in driving is known to mitigate this form of 
sickness (de Winkel et al., 2021; Rolnick & Lubow, 1991). 
 

3.1.6. Driver monitoring in automated vehicles 
Driver monitoring plays a critical role in automated driving as long as the automation allows the 
driver to have some control over the vehicle (Halin et al., 2021). In Continuous mediation, the driver 
is responsible for the driving task, and the driver monitoring system should therefore monitor the 
driver continuously. In Driver standby, the driver is no longer in charge of the driving task and does 
not need to supervise them. The driver must, however, be fallback-ready to be able to take over 
the control of the vehicle upon request from the vehicle. A driver monitoring system should 
therefore be capable of (i) assessing whether the current and near future state of the driver allows 
him/her to take over the control of the vehicle if requested now or in the near future, and (ii) 
monitoring the driver’s state continuously if the automated function is disengaged. 
 
UNECE regulation 157 and EU General Safety Regulation 2019/2144 mandates driver availability 
monitoring for automated functions (see section 2.3). This includes, for example, hands on wheel 
detection. In addition, El Khatib et al. (2019) discuss the need for driver monitoring while in 
automated driving mode to let the vehicle know if the driver is fit enough to regain control when 
asked to do so. If the driver decides to respond to a take-over request, a driver monitoring system 
would be useful to check whether the driver’s recent and current state allows for this. 
   

3.2. Results on practical validity from Mediator 
This section summarized the driver monitoring related findings from the experiments carried out in 
MEDIATOR. 
 



 

MEDIATOR | Deliverable D4.3 | WP4 | Final 17 

3.2.1. Fatigue monitoring 
A field study was conducted to investigate the transition from alert to sleepy while driving on real 
roads in real traffic, both during manual driving and when driving with Continuous mediation 
(Volvo’s Pilot Assist 2), and both during daytime (supposedly alert) and night-time (sleep deprived). 
Participants indicated their level of sleepiness by using the Karolinska sleepiness scale (Åkerstedt 
et al., 2014). As expected, the results showed that night-time driving led to markedly increased 
levels of sleepiness, whereas partially automated driving led to slightly higher levels, especially in 
the night-time drives when the sleep pressure was high. During daytime, when the drivers were 
alert, partially automated driving had little or no detrimental effects on driver fatigue. More details 
about the study can be found in Ahlström, Zemblys, et al. (2021).  
 
Two separate fatigue detection systems were developed based on the collected data, one based 
on physiological data, and one based on video data. The outcome of these measurements was 
validated based on the participants’ scores on the Karolinska sleepiness scale. The performance of 
the two systems is summarized below. 

3.2.1.1. Camera-based fatigue detection 

The camera-based real-time fatigue detection system is based on an algorithm developed by 
Bakker et al. (2021). The system was set up as a two-stage model with a generic deep feature 
extraction module combined with a personalised fatigue detection module. The system can operate 
in two modes: binary classification (“sleepy” versus. “alert”); and in continuous-output regression-
like mode, estimating directly the Karolinska sleepiness scale values. For binary classification we 
use the criterion that the “sleepy” class corresponds to reported values >=7, and “alert” 
corresponds to values <7. The system can also operate in a generic mode and in a personalised 
mode, where the latter adapts to a certain individual. 
 
The generic model has a binary classification accuracy of 76%. This means that 24% of the test 
data are misclassified, either as false alarms (false positives, indicating fatigue when the driver is 
alert) or “misses” (false negatives, indicating alert when the driver fatigued). The personalised 
model, trained on data from one day and tested on data from another day, showed an accuracy of 
90% and a mean absolute error of 0.7. Some sort of personalisation seems crucial since different 
people have different expressions of sleepiness. However, the increased detection performance 
comes at the cost of reduced usability and acceptance. 
 
The following lessons learnt are worth mentioning: 

• Camera positioning is key to acquire high quality data. Here, the camera was positioned on 
the steering column, meaning that the view from the camera was blocked during some 
steering manoeuvres, that the captures image cropped the face on very short or tall 
participants, etc. This had practical implications. For example, not all desired facial features 
could be used for sleepiness detection since they were outside the view from the camera. 

• Personalised algorithms outperform generic algorithms. 
• Truly independent train, validation and test datasets should be used when developing 

machine learning algorithms. To avoid generalisability issues when developing 
personalised algorithms, train and validation data should come from recordings from the 
same person but on different days and preferably under slightly different conditions.    

 

3.2.1.2. Physiology-based fatigue detection 

A binary classifier based on the AdaBoost method was developed to classify alert and sleepy 
episodes using the same Karolinska sleepiness scale-based criterion as above (Lu et al., 2021). 
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Different heart rate variability metrics acquired with a consumer wearable device were used as 
input to the classifier. The system can operate in a generic mode and in a personalised mode, 
where the latter is tailored to a certain individual, either by normalising the feature values with a 
baseline recording, or by injecting the training set with data from the individual being evaluated. 
 
Out-of-fold validation (worst case scenarios where the trained model is doing inference on unseen 
drivers) shows a mean absolute error of 1.0 with good bounds for confidence level. This means 
that on average, the estimates are about 1 unit different from the subjective Karolinska sleepiness 
scale ratings. Binary classification accuracy was 78.9%. In the case where the model has seen all 
the drivers during training, the mean absolute error performance was 0.5 and the accuracy 86.5%, 
which is an indication of the performance that can be expected from a personalised algorithm. 
 
Increasing robustness by using both camera-based and physiology-based features has not been 
done in the project, but it is a natural next step. We do not expect a substantial increase in 
accuracy, but availability would become better. For example, camera data loss is expected in 
higher levels of automation when the driver is out of position or when the face is obstructed with 
objects such as laptops.  
 
In the later on-road study with the Mediator Human Factors in-vehicle prototype (cf. Mediator 
Deliverable 3.4; Fiorentino et al., 2023), the following lessons learnt are worth mentioning: 

• Data were collected from sensors integrated in the steering wheel as well as from chest 
contact electrodes. The steering wheel electrodes provided fair quality data while drivers 
kept both hands on the wheel and only performed small steering movements. However, 
quality and availability deteriorated with hand movements and hands-off-wheel automation 
modes. This means that sensors located in the steering wheel provide data with sufficient 
quality in a non-obtrusive manner, but the technique is only suitable in manual driving or in 
Continuous mediation mode. For Driver standby and Time-to-Sleep mode, data will need to 
be complemented by other sensors, for example from a chest strap.  

• For optimal sleepiness detection, fully continuous data would be required, but fair accuracy 
was achieved with down to 5 minutes of continuous data.  

• The tested algorithm lacks in individualization capabilities, and while it performs fair for 
some participants it leaves room for performance improvement for others. 

 

3.2.2. Distraction monitoring 
An on-road study with ten professional drivers was conducted to investigate driver distraction when 
using the Mediator Technology Integration in-vehicle prototype. The drivers drove a 1-hour route 
ten times, 4 times with the complete Mediator system including driver state interventions, 4 times 
with the complete Mediator system but without driver state interventions, 1 time with the Mediator 
system essentially deactivated, and 1 time with a “misbehaving” Mediator system. Both quantitative 
and qualitative data were collected in the study. Distraction events were defined based on the 
AttenD algorithm (Ahlstrom et al., 2013). More details about the study setup and the results can be 
found in Mediator Deliverable D3.4 (Fiorentino et al., 2023). 
 
The study aimed to investigate three questions: 

1. Do distraction warnings reduce the number of distraction events?  
2. Is there a difference in visual distraction when the Mediator system is available versus 

unavailable? 
3. Is there a difference in the number of distraction events when driving manually versus 

when driving with Pilot Assist (SAE level 2)?  
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Repeated measures ANOVA results on the quantitative data showed that the distraction warnings 
did not have a significant effect on the number of distraction events. Neither was there a difference 
in the number of distraction events between manual driving and driving with SAE level 2. However, 
ANOVA results indicated that there was a significant difference in when the complete Mediator 
system was available versus unavailable, with a higher likelihood that the driver is looking away 
from the forward view when the Mediator system is active, Figure 3.1. This result is expected given 
the extra visual load and the continuously changing time budget information. Although the 
difference is significant, it is not likely to impose higher risks compared to driving without Mediator. 

 

Figure 3.1: Average AttenD score when MEDIATOR was available versus unavailable.  

Analysis of qualitative data, which included single-item measures combined with interview data 
showed that when distraction warnings were part of the Mediator functionality, the reliability of the 
system was rated low. One explanation might be that the distraction warnings were often perceived 
to be false alarms, and hence reduced the perceived reliability of the system. However, the overall 
reliability of the Mediator system was rated on average as good. 
 
Another on road study, performed with 50 naive participants and a Wizard-of-Oz setup, 
investigated the effect of the full Mediator HMI, including distraction warnings, on driver distraction 
in Continuous mediation mode. Distraction was defined as looking away from the road for 2 
seconds using the AttenD algorithm (Ahlstrom et al., 2013). The driver state algorithms used this 
AttenD output to determine the urgency level of the distraction. A higher urgency resulted in more 
urgent warning signals. The Mediator HMI was compared to a baseline HMI that was based on 
existing HMI designs (i.e., mainly using simple icons and sounds for interaction). In the baseline 
HMI the distraction warnings were turned off. A significant effect of both proportion of the time the 
drivers were distracted as well as the maximum duration of a distraction event was found between 
the Mediator and the baseline HMI. The results imply that the Mediator HMI, including distraction 
warnings, reduced distraction for these measures.  
 
The differences in results between the two on-road studies could be explained by both the sample 
type and the study setup. Professional drivers were expected to look at the mediator HMI more 
often so they could give their feedback which could have resulted in more distraction. Additionally, 
the triggering and implementation of the distraction warnings differed between the two studies. The 
first study provided the same warning every time distraction was detected, while the warnings in 
the second study had a low urgency level when distraction was initially detected but the urgency 
level could increase when distraction continued (i.e., the severity of the distraction increased). 
There were many other differences between the studies, such as a different route, different 
vehicles and different HMI designs. It is therefore difficult to pinpoint exactly what caused the 
differing results. Regarding driver monitoring systems, it is advised to investigate the effect of 
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adjusting the urgency level of the distraction warning on the compliance to this signal. If 
compliance is indeed increased with adjustable urgency levels of a distraction warning signal, this 
calls for driver monitoring systems to provide information on the severity of the distraction (rather 
than only the binary signal of distracted or not). 
 
Lessons learnt regarding distraction monitoring from the on-road experiments in the Mediator 
Technology Integration in-vehicle prototype includes: 

• The distraction identification was done by two cameras, a face camera placed on the 
dashboard to the right of the steering wheel and a body-view camera placed below the 
rear-view mirror. Complementing and combining eye/face tracking data with activity 
recognition software provided a better understanding of the driver’s actions.  

o Information from the activity recognition software, in addition to the gaze tracking 
data, can be used to trigger more accurate and customized countermeasures. 

o Activity recognition benefits from combining several data sources such as body 
pose, hands activity, object recognition and gaze direction. 

• Interviews with the participants, supported by questionnaire data, revealed that the 
distraction detection algorithm was too sensitive and gave false warnings, for example 
when the driver was waiting at an intersection and looking around to cross the intersection 
safely. 

o The number of false distraction warnings should be reduced by better quality 
assurance of sensor data and intermediate processed data.  

o False warnings should be mitigated by taking the driving context into account. The 
latter was done in the project by adapting the eyes-on-road requirements based on 
proximity sensors and road type. 

o Gaze direction algorithms should use (more) sophisticated (auto-)calibration, to 
improve gaze direction accuracy while preserving acceptance. 

 

3.2.3. Comfort monitoring 
An empirical study was conducted to investigate the potential of automated facial expression 
analysis for discovering action unit changes related to uncomfortable automated driving 
manoeuvres. The data comes from two driving simulator studies including 81 participants, all 
experiencing the same automated close-approach manoeuvre to a truck driving ahead three times. 
More details about the study are available in Mediator Deliverable D1.2 (Borowsky et al., 2020). 
Results from the study are summarized in sections 3.2.3.1–3.2.3.2. Lessons learnt regarding 
comfort monitoring include: 

• Real-time comfort assessment by automatic video-based facial expression analysis 
revealed situation-related patterns of visual attention, tension, and surprise. However, 
these patterns were only found on an aggregated level over all participants, and the 
technology is not mature enough to detect (dis-)comfort for a certain individual at a specific 
point in time. 

o Analyses of personal characteristics revealed strong differences in effects, 
therefore facial expression analyses will not perform equally well for every person, 
even when personalizing changes at the individual level (e.g., individual high/low 
facial expressivity). 

o The discovered effects on an aggregated level were found to be shifted in time per 
person (earlier/later onset of reactions), which already impacts aggregated data 
analysis and is even more challenging at an individual level.  

o It could be the case that individuals do not only show different strength of the 
(same) effects, but completely different action units patterns. Identifying these 
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qualitatively different patterns would require a higher amount of data, especially 
when aiming to make predictions at individual level. 

• Even though there seems to be general potential in facial expressions analyses for 
contributing useful information about users’ satisfaction with the current operations of the 
automated system, detection and prediction at individual level still needs further research. 

• Since real-time discomfort detection was found to be unreliable at an individual level, 
offline situation-based prediction of discomfort was used in the Mediator experiments 
(Mediator Deliverable 3.3; Borowsky et al., 2023). The offline approach enabled testing of 
active Mediator proposals with naïve users without false alarms of a still imperfect real-time 
discomfort detection system. 

 

3.2.3.1. Face tracking quality 

In the first driving simulator study two different camera brands were compared using the same face 
tracking software (Visage facial feature detection and face analysis SDK version 8.4). One camera 
(GoPro Hero 5) was mounted in the centre below the instrument cluster behind the steering wheel 
and the other (Intel RealSense SR300) centrally over the steering wheel. Due to the optimal 
horizontal angle, face tracking quality was high with only 6% of video frames without tracking for 
the lower camera and 12% for the upper camera. If the difference is due to the camera brand or 
the position is not known. 
 
In the second driving simulator study, four video cameras of three different brands were used, 
capturing the driver’s face from different directions. The main aim was to compare the impact of 
different camera angles on the face tracking results. Two cameras (GoPro Hero 5) were placed 
below the instrument cluster behind the steering wheel on the left and right side, one camera (Intel 
RealSense SR300) was placed centrally over the steering wheel, and the fourth camera (AVT 
Mako G-234B) was placed at the right side from the driver’s perspective next to the steering wheel. 
The percentages of not tracked video frames were lower compared to the first study: 26% (GoPro 
Hero 5, right), 35% (GoPro Hero 5, left), 43% (AVT Mako), and 43% (Intel RealSense). 
 
Overall, face tracking quality was primarily influenced by the camera angle and by obstructions of 
the face by the steering wheel. Some, mainly smaller, participants’ mouth region was obstructed by 
the steering wheel, resulting in lost tracking or worse tracking quality. Reflecting eyeglasses or 
beards were other factors that affected tracking quality. 

3.2.3.2. Discomfort-related effects on facial action units 

To maximize tracking availability and quality, action unit tracking results from all cameras were 
combined. The resulting tracking rates during the discomfort sequences were 97% in study 1 and 
80% in study 2, respectively. The results show that during the truck approach, participants’ showed 
situation-related pressing and stretching of the lips, a push-back movement of the head, raising of 
inner brows and upper lids as well as reduced eye closure. These patterns could be interpreted as 
visual attention, tension and surprise. The results indicate that automatic facial expression analysis 
can be used in research settings to give information about users’ comfort with automated vehicle 
operations. However, while aggregated results were stable on an aggregated group level, it was 
not possible to obtain stable and reliable results on an individual level (Beggiato et al., 2021). 

3.2.3.3. Situation-based prediction of discomfort 

Real-time comfort assessment is reactive in its very nature and aims to increase the drivers’ 
comfort level in case it decreases. However, to ensure a comfortable and positive driving 
experience, it would be better to anticipate and avoid a potential decrease in comfort before is 
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occurs. Predicting discomfort long enough in advance requires a different approach compared to 
real-time comfort assessment. Instead of using direct measurements based on facial expressions 
and physiology, the idea is to predict discomfort by monitoring the environment to identify 
upcoming uncomfortable driving situations. Mediator Deliverable D1.2 (Borowsky et al., 2020) 
presents an overview of potentially uncomfortable driving situations along with a time span for 
detecting the situation in advance. If such a situation is about to occur, an automated system can 
suggest a take-over from manual to automated driving (or vice versa) well in advance to avoid the 
uncomfortable situation. Examples of scenarios where discomfort may be avoided by a take-over 
from manual to (highly) automated driving include car following scenarios (55% a-priori probability 
of being experienced as uncomfortable), situations with poor visibility at night (54%), and 
drowsiness (70%). In other cases, discomfort may be avoided by suggesting a hand-over from 
automated to manual well in advance of situations where the road conditions increase the risk of 
motion sickness (75%), or in situations that cannot be managed by the automated system (100%). 
 

3.3. Results from discussions with developers  
A series of bilateral discussions/interviews were conducted with representatives from driver 
monitoring system companies, tier 1 suppliers, original equipment manufacturer, and test 
organisations. The representatives were Raimondas Zemblys from Smart Eye, Clémentine 
Francois from Tobii, Fabian Faller from Continental, Claus Marberger from Bosch, Caroline Chung 
from Veoneer, a driver monitoring expert from Stellantis, Mikael Ljung Aust from Volvo Cars, and 
Rikard Fredriksson from the Swedish Transport Administration and Euro NCAP. Results from these 
discussions are summarised in the form of questions and answers.  

3.3.1. Which driver impairments are most important to detect and mitigate? 
All respondents mentioned the same four impairments, (i) Distraction and Inattention, (ii) Fatigue 
and Sleep, (iii) Sudden sickness, and (iv) Intoxication from alcohol and drugs. The reported reason 
why the respondents brought forth these four impairments was that they contribute to a substantial 
proportion of fatal crashes on our roads. With assisted and automated driving features, the list 
should also be complemented with (v) driver engagement, to ensure that drivers fulfil the 
requirements for supervision and take-over performance.  
 
Several developers raise the question of occupant monitoring. By keeping an eye on all occupants 
in the vehicle, it becomes possible to ensure that children are not left behind in hot cars, that all 
occupants wear their seatbelt, and that safety systems such as airbags are used in a proper way if 
occupants are out of position.  

3.3.2. Which ground truths or gold standards are used to assess driver 
impairment? 
Microsleep and Sleep are often pragmatically defined as closed eyes, even though a more rigorous 
approach is to assess sleep via polysomnography. Fatigue and Drowsiness are less straight 
forward to assess. They are typically operationalised via subjective sleepiness ratings on the 
Karolinska sleepiness scale, where alert is defined as 1–4, 1–5 or 1–6 and fatigued is defined as 
6–9, 7–9 or 8–9. The intermediate ratings 6 and 7 are sometimes added as a third class, and 
sometimes they are left out during system development/training (in case of binary classification of 
alert vs fatigued). In cases where the Karolinska sleepiness scale ratings are clearly incorrect, 
some developers adjust (or omit) these erroneous ratings. This trend of using subjective sleepiness 
ratings has been reinforced with the General and Pedestrian Safety Regulation package 
(Regulation (EU) 2019/2144), where the EU requires the fitment of “a system that assesses the 
driver’s alertness through vehicle systems analysis and warns the driver if needed” on new vehicle 
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types from 2022, and that advocates using subjective sleepiness as the evaluation criteria. The 
same subjective sleepiness ratings are also often used as target values when developing fatigue 
detection systems. One respondent argued that the only measure that can be used to assess 
driver fatigue is the driver’s performance. Since measures lose their relevance in autonomous 
driving scenarios, it would be favourable to find new fatigue indicators/metrics that are strictly 
correlated to driving performance in manual driving. The same metrics could then be used in 
automated driving settings as well.  
 
When mentioning distraction, most developers refer to looking away from the road too often or for 
too long. Road is here synonymous with the forward windscreen or a corresponding area, and the 
meaning of too long is usually 2 – 3 seconds. Looking away is measured either via manual 
annotations or via eye tracking. Some argue that measuring eyes off road is enough to catch most 
instances of distraction while others state that distraction detection is more complicated than just 
measuring eyes off road. In the latter case, there is a desire to measure if a driver is attentive 
enough in a particular situation, but this requires information about the situation and the intentions 
of the driver. Some also mention activity recognition as a direct indictor of distraction, equating 
behaviours such as mobile phone use or talking to a passenger with an impaired state. In addition 
to visual distraction, there is also cognitive distraction, or attention that has shifted away from goal 
relevant information. Cognitive distraction is often operationalised via workload and measured 
using NASA-TLX (Task load index; Hart & Staveland, 1988), even though this is not necessarily 
true given that cognitive distraction can happen in situations with both high and low load. 
 
Although thresholds may differ between countries, intoxication by alcohol and drugs have clear 
medical definitions and there are gold standards for testing and quantifying substance levels. The 
situation is similar for sudden sickness, which should be seen as an umbrella term covering a 
variety of conditions (diabetic shock, cardiac events, seizures, etc.), where the common result is 
driver incapacitation.  

3.3.3. Which driver impairments can be measured today? 
For fatigue, several respondents said that eye movements and blink behaviour are particularly 
good indicators. Especially, eye movements slow down and the eyelids are closed for longer 
periods of time. A difficulty is that the same indictors are also signs of cognitive load and alcohol 
intoxication. It is feasible to detect even early signs of fatigue. Some developers state that 
personalised algorithms will improve detection performance, either using stored baseline data from 
a certain driver, or by collecting baseline information in the beginning of the drive. Other developers 
state that their fatigue detection system does not need personalised baseline information. Either 
way, it is necessary to use a time window of several seconds up to several minutes to see how the 
eye metrics evolve over time, before the fatigue estimate can be derived. By and large, driver 
monitoring system developers seem confident that fatigue, microsleep and sleep can be measured 
with camera-based systems. There are, however, difficulties to verify that the systems work as 
expected since ecologically valid test procedures are complex and time consuming. 
 
Camera-based face and eye tracking has come a long way and is quite robust today. This 
technological development has paved the way for driver monitoring systems capable of measuring 
when drivers’ eyes are not directed to the forward roadway. In that respect, distraction can be 
measured today. Similarly, the camera can be used for activity recognition to detect non-driving 
related tasks like eating, drinking, and reading a book. There is also interesting research on 
assessing attention and intentions, mind wandering and cognitive load, but such systems are not 
market-ready yet. 
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Alcohol intoxication can be assessed with breathalysers, also with contact-free, unobtrusive 
measurement of a driver's breath alcohol level. Such systems are usually integrated with an 
alcolock, preventing the engine from starting if the driver is under the influence of alcohol. There is 
research investigating if alcohol can be assessed with a remote sensor such as a camera, but such 
systems are not market-ready yet.    
 
Sudden sickness is typically not measured directly. Instead, the state is inferred from non-
responsiveness as driver incapacitation. Euro NCAP defines this as a driver who either does not 
return their gaze to the forward road view within 3 seconds of an inattention warning or a driver 
whose gaze has been away from the forward road view or has been eyes closed for more than 6 
seconds.  

3.3.4. What are the limitations of today’s driver monitoring systems? 
Camera-based driver monitoring systems are now so extensively trained and validated that they 
require no calibration, track faces and eyes almost instantaneously, operate across a near 180-
degree range, and work through most sunglasses. The algorithms can manage gender and 
ethnicity, and works with most hoods, hats, caps, scarves, face masks, hijabs and niqabs. To an 
extent of course. Certain glasses still pose a problem, either if they cause a lot of reflections, or if 
they are blocking infrared light, and too much of the face cannot be covered by hoods, face masks 
etc. Vehicle manufacturers are also worried about the black box machine learning algorithms that 
are used for face recognition and tracking. It is yet largely untested how these algorithms perform 
when scaling up the number of users. Large-scale deployment always reveals problems that have 
not been caught in the prelaunch testing phase, and since driver monitoring is intended as a safety 
system, it must work as expected on all drivers.  
 
Many vehicle manufacturers opt for single camera solutions, low-cost sensors, and power efficient 
lower end automotive computers. This inevitably leads to problems if the view of the (one) camera 
is obstructed, for example by a book or a phone. Further, the calibration-free approach comes with 
the cost of reduced accuracy. If the intended application requires an absolute gaze direction 
accuracy of 1 degree, there will be quality problems. An accuracy of about 5 degrees will however 
work fine on most participants without calibration. Also, when using one or just a few cameras, it is 
difficult to get a clear camera view of the drivers’ eyes in all gaze directions. Typically, vehicle 
manufacturers want to position the cameras close to rear-view mirror to be able to see the whole 
cabin, making it hard to monitor the face of the driver and all the desired signals, because there will 
only be a few pixels accounting for the driver’s face. It will also be challenging to track the face if 
there is occlusion like baseball caps, or to track the eyes if the driver looks down, because the 
camera will only be able to see the eyelids. Another common sensor location is on the steering 
column, which means the line of sight will often be obstructed, typically by the hands and the arms, 
and especially so when turning the steering wheel. The best camera location for eye and eyelid 
tracking is right in front of driver, but that may not be so practical. Lower sensor positioning is 
preferable to cover glances inside the vehicle, while a higher position is better when tracking 
glances through the windscreen. Similarly, very short or very tall drivers may be difficult to track 
since only parts of their face fits into the camera image. Using a multi-camera system would solve 
many of these issues, but few customers are willing to pay for this, so mono-camera systems will 
be most common on the mass market.  
 
Infrared camera sensors work well in the dark, and after moving from 850nm to 940nm, they also 
work well in direct sunlight. Depending on where the sun is there might still be issues though. 
Some developers have started to investigate other wavelengths such as the short-wave infrared 
band. The advantage of moving to shorter wavelengths is that the sunlight has lower energy in 
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these frequency bands. However, these new cameras are not market-ready for automotive face 
tracking applications.  
 
An indirect problem with sunlight is that drivers squint when they get the sun in their eyes, 
obstructing the view for the camera. Some developers state that they have solved this issue while 
other see it as problematic. 
 
Measuring gaze direction and eyelid opening is one thing. Interpreting the meaning of a glance and 
estimating the information gained via a glance is something else. When it comes to making sense 
of the eye movement signal, how to interpret it and to decide whether the situation is critical or 
whether it is reasonable to start interacting (warn) with the driver there is still a long way to go. 
Camera-based or physiology-based systems are referred to as direct driver monitoring systems, 
but it must be understood that these systems still use indicators to estimate the drivers’ state. Gaze 
direction is a proxy for visual attention, but foveal vision is not enough to determine if drivers have 
perceived and understood their environment. A clear example is the fact that peripheral vision 
cannot be measured, so there is no way of knowing if a driver has seen a pedestrian just because 
there was no fixation in that direction. Similarly, activity recognition can be used to measure that a 
driver holds a mobile phone, but this does not necessarily mean that the driver is inattentive. 
Reduced heart rate and increased heart rate variability could mean that the driver is drowsy, but it 
could also mean that the driver is in a relaxed low load state. Such corner cases are hard to get 
around, and unfortunately the corner cases are quite common.  
 
Tier 1 suppliers have started to merge information from driver monitoring systems with the vehicle’s 
situational awareness sensing systems, but such fusion-based systems are still in the development 
phase. Fusing information about the driver’s state with the prevailing situation and the current 
automation level will become more important in the near future, to make sure that the driver and 
the vehicle are level compliant. Taking complexity such as traffic density, weather, and road 
curvature into account to determine how probable it is that the automation system will work 
properly, in combination with information about the driver’s state, to determine the time needed for 
the driver to safely take over. This is the main reason for fusing driver monitoring with external 
monitoring. The application of improving the actual driver state detection by making use of 
environment sensing appears to be down prioritized by system developers, perhaps since it quickly 
leads to more complex system setups. For example, if you want to measure the intersection 
between the measured gaze vector and outside objects, it is not sufficient to use a calibration-free 
mono-camera eye tracker. With a gaze direction error of up to 5° this will quickly lead to large 
alignment errors if the object of interest is 20–30 meters away from the vehicle. Building a safety 
critical system under such premises is not feasible.  
 
When considering devices that determine the state of a driver by physiological signals, 
dissimilarities in physiologic mechanisms and origins cannot be disregarded. One of the key issues 
that needs to be resolved is linking the characterization of the impairment as manifested in the 
physiological parameters with driving task performance, and, conceivably, to the risks associated 
with a particular driver’s condition. Another concern is the validation of monitoring devices, to prove 
the acceptance, effectiveness, and reliability of physiology-based monitoring devices before they 
are brought to the market. Indeed, there are currently no agreed-upon physiological parameters to 
serve as a reference (ground truth, gold standard) for the validation and test protocols that apply 
specifically to such systems. 
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3.3.5. How to make best use of driver monitoring information? 
The first thought is that a detected driver impairment should be communicated to the driver. This 
could be in the form of a warning, a suggestion, some advice, or similar. Vehicle manufacturers are 
not very keen on this solution. A fatigued driver is already aware of being sleepy but often 
continues to drive anyway. For a warning to be efficient and convincing, it could be timed to 
cooccur with an event such as a lane departure and an automatic steering back into the lane. 
Unless the warning is connected to an event, it is all too easy to dismiss with a mental remark such 
as “I am almost home and will surely manage to drive the last 30 minutes as well”. In the same 
vein, the warning should be coupled with a suggestion on how to best counter the impairment, like 
guiding the driver to the nearest rest stop. 
 
Distraction warnings provided when looking away for too long can also be problematic for several 
reasons. First, the driver will most often glance back at the road anyway after a long glance away 
from the road. Second, if the driver gets a warning, looks back at the road, and finds that 
everything is ok, then the feeling of being in control is reinforced, resulting in lower acceptance. 
Third, if an event requires the driver’s immediate attention, it is likely that the warning (that is 
triggered after looking away for several seconds) will arrive too late. Inopportune glances away 
from the road can be detrimental even if they are short, and it is not likely that a distraction 
monitoring system will catch these while providing a warning that gives the driver sufficient time to 
act. A better solution would then be to prevent or mitigate the unfolding situation by an automatic 
emergency breaking/avoidance manoeuvre. Such systems are already tuned with the inattentive 
driver in mind. For example, Euro NCAP suggests that a forward collision warning should not be 
issued later than when the time to collision is 1.7 seconds. This time allows the driver to look up, 
get a grasp of the situation, and initiate an evasive manoeuvre. For an attentive driver, 1.7 seconds 
is quite long and there is a great chance that the warning is perceived as overcautious and often 
even incorrect. It is often suggested that driver assistance systems, such as forward collision 
warnings, should be issued earlier if the driver is distracted. However, since the “looking back and 
react” time is already included in the 1.7 seconds (or similar threshold), this will not add much. On 
the contrary, and perhaps counterintuitive, vehicle manufacturers instead argue that the role of the 
driver monitoring system should be to delay warnings or automated evasive manoeuvres. This 
would prevent incorrect interventions and thus increase acceptance and trust, and consequently 
avoid disengagement of safety functions, which will increase safety in the long run. In this scenario, 
the driver monitoring system is not used as a direct safety measure, but rather as a means to avoid 
false interventions. Vehicle manufacturers are not very interested in monitoring the driver. What 
they want is to get a better understanding of when it is legitimate for the vehicle to interfere, or not, 
with the driving task.  
 
A use case where driver monitoring systems can be used more directly is sudden sickness, or 
rather if the driver is clearly incapacitated or simply moves out of position and disappears from the 
camera image. In such cases it is obvious that the driver is incapable of driving, and consequently 
the safety systems in the vehicle should make sure to remain in the lane, and preferably also come 
to a safe stop. 
 
Alcohol intoxication can be measured with a breathalyser, and the mitigation strategy is then to not 
start the engine to prevent drunk drivers from driving. Given the undisputed negative effects of 
alcohol intoxication on traffic safety, the natural thing would be to install alcolocks in all vehicles. 
However, customers do not want this, why vehicle manufacturers will not take this step. And 
apparently governments do not want this either because otherwise alcolocks would have been 
mandated by law. Nuisance alarms, where detections arise from alcohol content in food or 
medication, can be an issue though.  
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In relation to sickness and alcohol detection, it was clear that automakers are not very keen on 
installing medical equipment in the vehicles, especially with the accompanying calibration and 
approval processes. Instead, they are attempting to measure when drivers drive as if they are 
drunk, and if this happens, they use the ordinary safety systems to manage the situation to the 
extent possible.   
 

3.4. Mapping driver impairments to driver monitoring systems 
Inspired by the Safe-by-Design heuristic developed by Jannusch et al. (2021), representative 
information about driver impairments is here used to identify possibilities and limitations with 
different sensors/information commonly used in driver monitoring systems. The idea is to identify 
the need and effectiveness of driver monitoring based on representative usage patterns. The rows 
in Table 3.1 lists representative driver impairments, whereas the columns list the type of driver 
monitoring sensor/information that is suitable or needed to evaluate each impairment. Table 3.1 is 
deliberately broader than the scope of MEDIATOR and aims to give a holistic overview of the 
diverse and multifaceted information need that is associated with driver monitoring. Examples of 
what the columns represent is provided below: 

• Lateral and longitudinal control: Driving performance metrics such as line crossings, lateral 
variability, and short headways. 

• Automation mode/state: An account of which automated functions are currently activated. 
The information is needed since different automation levels put different requirements on 
the driver. 

• Surrounding road environment: Information about surrounding road users and their 
predicted travel path. Could be used to improve workload and distraction metrics, by taking 
driving context into account. 

• Digital maps: Data on the surrounding infrastructure. Could be used to improve workload 
and distraction metrics, by taking driving context into account. 

• Out of position: If the driver is positioned in a way that makes it difficult or impossible to see 
the road. 

• Posture: Related to out of position. Could be used when head/eye tracking fails, and also 
as a sign of fatigue or sleep (slouching body posture) or incapacitation (collapsed body 
posture). 

• Hands on steering wheel: An indication of driver readiness, perhaps mostly useful in 
transfers of control, and in shared control situations. 

• Head tracking: An estimate of visual information acquisition. 
• Eye tracking: A better estimate of visual information acquisition. 
• Eyelid opening: Related to fatigue and sleepiness.  
• Pupil diameter: Psychophysiological indicator of various impairments such as cognitive 

load, fatigue, drug abuse and alcohol intoxication. 
• Activity recognition: Detection of certain activities, such as holding a mobile phone or 

eating a sandwich.  
• Facial expression recognition: Estimation of sentiments such as anger, disgust, fear, joy, 

sadness, and surprise. Sometimes also compound emotions such as happily surprised and 
sadly fearful. 

• Respiration: Breathing patterns has a bi-directional relationship with emotional states such 
as anxiety, depression, anger, stress, and also with fatigue. 

• Heart rate: Heart rate and heart rate variability patterns has a bi-directional relationship 
with emotional states such as anxiety, depression, anger, stress, and also with fatigue. 
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• Skin conductance: The sympathetic branch of the autonomic nervous system reflects 
emotions and arousal, which affects sweat gland activity and hence skin conductance. 

• Alcolock: Provides an estimate of blood alcohol content before the drive.  
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Table 3.1. Representative examples of driver impairments versus driver monitoring related information that can be obtained 

from the interior and exterior of the vehicle. The number of + indicates greater potential/need for the sensor data to 
meet the requirements evoked by the example impairment. The number of + is our estimate based on the 
information in this chapter. 
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Long glances away from the road +   +     + ++         

Visual time sharing +        + ++         

Inopportune glances away from 
the road 

  ++ ++     + ++         

Neglect to check for cyclists over 
the shoulder before turning right 

  + ++   ++  + ++         

Neglect to assure free space 
before making a lane change 

  ++ ++   ++  + ++         

Unfit to take over control in relation 
to takeover request 

 ++    ++ ++ ++ + ++ ++        

Anger, sadness, frustration +      ++     +  ++ + ++ +  

(Dis-)comfort       +       ++ + + +  
Eating/drinking +            ++      

Tending to children +         +   ++      

Interact with navigation system +        + +   ++      

Interact with mobile phone +        + +   ++      

Talk on handheld mobile phone         + +   ++      

Talk on handsfree mobile phone         + +   ++      

Boredom  +  +   ++    + +  ++ + + +  

Early signs of fatigue    + +  +   + ++ ++  + + +   

Severe fatigue + ++  + +  +  + + ++ ++  + + ++   

Sleep + ++    + ++ + + + ++ ++   + ++   

Above legal alcohol limit + ++        + + + +     ++ 
Intoxication via drugs  ++        + + +       

Incapacitated driver + ++    ++ ++ + ++ + ++     ++   
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3.5. Safety benefits of driver monitoring systems 
The share of fatalities in distraction-affected crashes, i.e., a crash involving at least one driver who 
was distracted, is 8.1% in the US (Stewart, 2022) and 5 - 25% in Europe (European Commission, 
2022). For fatigue, the share of fatalities involving drowsy drivers is 1.6 % in the US (Stewart, 
2022) and about 17 % in Australia (Ansari et al., 2023). In Europe, a survey across nineteen 
countries have shown that the prevalence of falling asleep while driving in the previous 2 years is 
17 %, and amongst those who fall asleep, the prevalence of sleep-related crashes is 7 % 
(Gonçalves et al., 2015). For alcohol, the share of fatal crashes involving alcohol are 17 % in 
Australia (Ansari et al., 2023), 30 % in the US (Stewart, 2022), and 25 % in Europe (European 
Commission et al., 2022). Sudden sickness has been found to be the direct cause for about 10% of 
fatal motor vehicle accidents, where cardiovascular related conditions are the dominating cause 
(Tervo et al., 2008). All these fatalities can obviously not be avoided by driver monitoring systems, 
since detection of an impairment is different from preventing it from happening. This makes it 
difficult to estimate the true safety benefits of driver monitoring systems. 
 
Many new vehicles are equipped with advanced driver assistance systems designed to actively 
prevent crashes. Examples include forward collision warning, autonomous emergency braking 
systems, lane departure warnings, and lane keeping assistance. Such systems reduce front-to-
rear, single-vehicle, sideswipe, and head-on injury crash rates, i.e., crashes that are often 
associated with driver fatigue and/or inattention. It has been shown that: 

• Lane departure warnings lower involvement rates in crashes of all severities with 18 %, in 
those with injuries with 24 %, and in those with fatalities with 86 % (Cicchino, 2018).  

• Forward collision warning reduces front-to-rear crash rates with 27 % and front-to-rear 
injury crash rates with 20 % (Cicchino, 2017). 

• Low-speed autonomous emergency braking reduce front-to-rear crash rates with 43 % and 
front-to-rear injury crash rates with 45 % (Cicchino, 2017), and pedestrian crash risk with 
25–27 % and pedestrian injury crash risk with 29–30 % (Cicchino, 2022). 

 
It is not known how many of the remaining injury-crashes that could have been avoided by an 
earlier intervention triggered by a driver monitoring system.  
 
The extent to which more advanced automated functions have safety benefits above and beyond 
what was listed above has yet to be determined (Mueller et al., 2021). There are however concerns 
about potential unintended negative consequences. For example, driver fatigue can be higher 
when using SAE level 2 as compared to manual driving (Dunn et al., 2021; Kundinger et al., 2020), 
especially during night-time when the sleep pressure is high (Ahlström, Zemblys, et al., 2021). It is 
also more common to engage in non-driving related tasks when using automated functions (Dunn 
et al., 2021; Kim et al., 2022). A recent study conducted in Finland aimed to identify to what extent 
vehicles capable of SAE level 3 automation may improve traffic safety (Malin et al., 2022). In the 
study, level 3 was implemented as a system able to keep the vehicle in lane and maintain a safe 
distance to vehicles in front, including functionalities for emergency braking and electronic stability 
control. Under the assumptions that all target crashes are prevented by the system, and that 100 % 
of the fleet is equipped with such systems, it was estimated that a level 3 system designed for 
motorways has the potential to affect 3.3 % of injury crashes, 3.1 % of fatalities, and 3.2 % of all 
serious injuries in Finland. The corresponding fractions for a level 3 system operating in urban 
environments were 2.2 %, 1.1 % and 2.5 %, respectively. Bjorvatn et al. (2021) found that level 3 
automation on motorways improves safety if the operational design domain requirements are 
fulfilled. However, since the motorway network is limited and since its safety level is already good, 
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the total safety effect (of all injury crashes) is limited to 0.1–1.2 %, with a penetration rate of 5–30 
% (Yue et al., 2018). 
 
Based on the study by Malin et al. (2022), we can assume that about 3 % of all injury crashes can 
be prevented if manual driving is replaced with perfect automation on motorways. Out of these 3 
%, about one third are caused by sensing/perceiving factors or impairment (Mueller et al., 2020). 
Since driver monitoring systems perform best in similar environments (similar operational design 
domains) as automated systems, it makes sense to consider injury prevention by perfect 
automation as an upper limit to what can be achieved with a perfect driver impairment mitigation 
system, which would then be one third of 3 %.  
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4. Guidelines 
Based on literature, existing recommendations, interviews with experts, and experimental research 
performed within the Mediator project, several guidelines have been developed for driver 
monitoring systems. The guidelines proposed in the following are defined based on functionality, 
technological possibilities, safety relevance and feasibility. In this chapter, first the requirements of 
a driving monitoring system for vehicles with multiple levels of automation are briefly discussed 
after which the guidelines are summarized per sensor type and per impairment. The chapter ends 
with guidelines related to the evaluation of driver monitoring systems. 
 
Requirements for a driver monitoring system are dictated by the automation mode. The automation 
mode determines responsibilities and affordances, but also the a-priori probability that certain 
states occur (see sections 2.4.1 and 2.4.3). Requirements also differ depending on whether the 
driver monitoring system is used for classification of current state variables, or prediction of future 
states.  
 
In Continuous mediation, the driver must be alert and must uphold situational awareness by 
monitoring the traffic environment as well as essential information systems such as the 
speedometer, the mirrors, and the state of the automated functions. The main challenges for a 
driver monitoring system are fatigue and distraction detection, and possibly specification of their 
causes. For instance, optimal mitigation strategies may differ depending on whether fatigue is 
sleep related or caused by cognitive underload or overload.  
 
In Driver standby, the driver is allowed to be distracted, but must be ready to take over in seconds. 
The main challenge is fatigue detection, ensuring that a driver will be able to respond in time when 
a take-over request is made. In addition, it may be desirable to make sure that a driver has 
sufficient situational awareness to be able to respond adequately. Therefore, occasional visual 
sampling of essential vehicle information systems may be required. Another potential concern for 
future vehicles where the driver may be out of position, for example to engage with other vehicle 
occupants or to facilitate work, is that the driver must face forward before any transfer of control to 
the driver takes place. 
 
In Time-to-Sleep, the automation can handle the driving task for a significant amount of time (e.g., 
enough to take at least a short nap). If situations arise that the automation cannot handle, it must 
be capable of performing a safe stop manoeuvre in cases where the driver is not able to take over 
control. For this automation level any oncoming takeover request will be feasible from a wakeful 
state and therefore the primary challenge lies in waking up a sleeping driver and estimate the time 
required to sufficiently recover from sleep inertia. Sleep inertia is characterized by a transitory 
period of hypovigilance, confusion, disorientation of behaviour and impaired cognitive and sensory-
motor performance. The duration of this period depends on a large number of factors including 
sleep history, circadian timing, duration of the sleep episode, which sleep stage the driver is 
awakened from, and if one eats before sleeping (Hilditch & McHill, 2019; Tassi & Muzet, 2000). 
Specifically, people are most difficult to wake from deep sleep cycles, a situation which is also 
associated with the most severe sleep inertia with detrimental and lasting cognitive effects (Ferrara 
& De Gennaro, 2000). Consequently, accurate estimation of the time required for a driver to retake 
control of the vehicle requires knowledge of the current sleep cycle, as well as knowledge of 
idiosyncratic properties that affect this time (Hirsch et al., 2020; Wörle et al., 2021). 
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4.1. General sensor-related aspects 
To adhere to the requirements previously described, a driver monitoring system will need to be 
equipped with sensors. Here, several types of sensors that can be used to estimate the level of 
distraction, fatigue and comfort are described and general guidelines for these sensors are 
provided. Guidelines that are specific to either distraction, fatigue or comfort monitoring are 
described in subsequent sections. 
 
General guidelines that apply to all driver monitoring systems include: 

• No safety critical systems in the vehicle should rely on the driver monitoring system, for 
example during transitions of control from automation to human. 

• The system should self-diagnose failures and test its functioning before the start of its 
operation. 

• The system should operate regardless of adverse environmental conditions (low lighting, 
wet and dirty conditions, humid and warm, etc.). 

• The robustness of driver monitoring methods can be improved by combining multiple, 
complimentary or redundant, sensory modalities (i.e., sensor fusion). If this is done, vehicle 
manufacturers must guarantee proper integration of the various subsystems. 

• The use of a separate Controller Area Network bus for driver monitoring sensors and 
subsystems is highly recommended for issues of safety and protection against 
interferences. 
 

4.1.1. Computer vision systems 
Computer vision systems are used for classification of distraction, fatigue, and comfort/emotions, 
by monitoring driver posture, head orientation, gaze direction, eye-closure, facial features, and 
engagement in NDRA. The requirements for camera systems for monitoring of different driver state 
variables largely overlap, and the following general recommendations can be made: 

• Eye trackers come in a variety of forms, including cameras facing a subject, head-mounted 
devices, and glasses. To maximize convenience for users and to prevent dis- and misuse 
of monitoring systems, unobtrusive remote eye trackers should be implemented. 

• Eye monitoring cameras and IR omitting sources should not interfere with the driver’s view. 
• Computer vision systems tend to be susceptible to artifacts caused by rapid changes in 

illumination common in car driving. Infrared cameras, possibly combined with infrared light 
emitters, appear most robust to changes in lighting conditions (Hermens, 2020). 

• The system should be robust to occlusions of the face and/or body. This can be achieved 
by using multiple, and at least two cameras, placed in different locations. 

• The system must be able to deal with individual differences in appearance such as: face 
shape, skin tone, eye shape, resting aperture and colour, the presence of facial hair, and 
various kinds of lenses and spectacles. Each of these factors has been implicated as 
affecting eye tracking accuracy and precision (Holmqvist et al., 2023). 

• Most manufacturers of remote eye trackers recommend a distance between the camera 
and the eyes within a narrow range of approximately 60–70 centimetres, up to at most 
approximately 50–100 centimetres. These distances are dictated by the camera systems’ 
optical properties. When a person moves outside of the tracking range, inaccuracies, noise 
and data loss are likely introduced (Holmqvist et al., 2023). Camera systems should be 
installed in positions that ensure the optical sweet spot matches the range in which a driver 
is free to move their head. 

• The system should evaluate the reliability of its classifications. A warning should be issued 
when the system is not able to provide classifications of eyes on road and/or NDRA with 
sufficient certainty, for instance due to the driver wearing a mask. 
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• Eye trackers often require a calibration procedure to be performed at the outset of system 
use. Ideally, an eye-tracking system implemented in a vehicle should work without the 
need for such calibration, because the need for a driver to perform a calibration procedure 
each time the vehicle is started, even if short, can be considered obtrusive and is error 
prone, and is therefore detrimental to user acceptance. 

• The system should become operational when the vehicle is switched on and remain on as 
long as the vehicle is operational. 

4.1.2. Vehicle-based data 
Driver control inputs to the vehicle can be used to determine driver state variables. Fatigue, for 
example, may be estimated using the time history of lateral position or steering wheel angles. 
Here, frequent small corrections are indicative of an alert state, whereas infrequent large inputs are 
indicative of drowsiness. In a comparison of this method to estimation of fatigue based on eye-
closure, it was found to be more accurate (79% vs. 55%; McDonald et al., 2014). On the other 
hand, optimised vehicle-based indictors of fatigue perform worse than a biomathematical model of 
fatigue based on sleep history alone (Sandberg et al., 2011). An advantage with vehicle-based 
data, such as lateral and longitudinal positioning, is that these measures directly reflect safety 
critical performance decrements like swerving and lane departures. At the same time, a 
disadvantage is that it can be difficult to assess the cause of the event, which in turn makes it 
difficult to deploy an appropriate countermeasure. 
 
Other types of vehicle-based data, such as when drivers override the automated driving system, 
can also be used as an indirect indicator of discomfort. 
 
The use of driver control inputs to measure state variables is unobtrusive and can augment 
estimates from other systems to improve accuracy and precision.  

• To be able to extract useful information from these data, the sampling rate must be 
sufficiently high to capture the relevant range of control input frequencies. A sampling 
frequency of about 10Hz is adequate to capture the highest frequency components of 
inputs to the steering wheel, accelerator, and brake pedal alike (Delice & Ertugrul, 2007). 

• The accuracy and availability of the data must also be good enough, and above all, it must 
provide an indication that data is missing in cases when data are unavailable. A typical 
example here is incorrect lane position data on roads with missing or poor road markings.  

 

4.1.3. Physiological data  
Empirical studies typically measure physiological correlates of driver state variables using methods 
such as adhesive electrodes or other sensor elements placed on various locations of the body. 
Given the obtrusive nature of such methods, they are not desirable for actual implementation in 
vehicles. Non-obtrusive alternatives are, for example, capacitive sensors in the steering wheel. 
Through contact with the fingers, these sensors can be used to measure heart rate (Leonhardt et 
al., 2018), as an indicator of fatigue or stress/discomfort; and skin conductance, informative of 
motion sickness (Warwick-Evans et al., 1987). However, such measurements require two hands on 
the steering wheel. Several alternative methods to monitor physiological state variables may be 
considered: 
 

• Contact-based sensors can be incorporated into constant-contact areas between driver 
and vehicle, such as the back of the seat or the seat belt. Such solutions offer the 
advantage that they allow a driver to take their hands off the wheel but have the 
disadvantage that sensors must be sufficiently sensitive to obtain readings through other 
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media, or materials such as clothing. This may prove detrimental to estimation of some 
state variables but may not be of much concern for other cases; for example, monitoring 
changes in posture using a pressure-mat in order to infer discomfort. 

• Wearables and other nomadic sensors can be used as an "opt-in/added value", but 
sensors not integrated in the vehicle cannot be used for safety-critical decisions. 

• Steering wheel sensors should operate without wiring and without obstructing the operation 
of the airbag.  

• As non-contact methods, thermal and RGB camera imaging may be considered. These 
methods monitor volumetric changes in the facial blood vessels during the cardiac cycle 
and indicate the timing of cardiovascular events. These methods can be used to estimate 
heart rate, but they are not sufficiently precise to estimate heart-rate variability (Kranjec et 
al., 2014). 

• Other non-contact sensor systems have been proposed, for instance based on monitoring 
reflections of laser light, ultrasound, and micro-waves (i.e., optical vibrocardiography, 
ultrasonic sensors and radar). These methods are potentially sufficiently precise to 
determine heart rate variability. However, as of yet, these methods should be considered 
experimental (Kranjec et al., 2014; Leonhardt et al., 2018). 

• Meaningful analysis of heart rate variability is mainly dependent on the integrity of the basic 
cardiac input signal and the temporal accuracy of heartbeat detection. For healthy adult 
individuals with normal amplitude variability, a minimal sampling frequency of 125Hz and 
sampling window size of 1 minute is required, although rates of 200 Hz may be necessary 
for low-amplitude rhythms in some populations (Laborde et al., 2017).  

• Even with an adequate digitization rate, temporal accuracy of heartbeat detections can be 
degraded by noise in the input signal and this timing may require signal filtering or the 
application of a peak-finding algorithm to improve the localization of the heartbeat. 
Therefore, it should be preferable to refer to the overall resolution in inter-beat interval 
detection of the entire recording / analytical system. An overall accuracy in the timing of 
two consecutive heartbeats of 2 milliseconds is adequate for most applications, but a 
resolution of 1 millisecond is preferable (Berntson et al., 1997). 

• The window size used for heart rate variability analyses should be chosen in accordance 
with the purpose of data collection. To illustrate, the minimal sampling window size to 
estimate an indicator of stress by heart rate variability analysis (Vrijkotte et al., 2000) is 1 
minute, but using heart rate variability as an indicator of physical fatigue (Ni et al., 2022), 
requires recommended window size of 5 minutes (Laborde et al., 2017; Malik, 1996). It 
may be noted that when multiple indices are to be derived from a single data source, 
sampling frequency and window size should be chosen such to accommodate the most 
stringent requirements. 

 
It should be noted that there are issues with the specificity of physiological data. In the interviews 
conducted with driver monitoring system developers, it was noted that reduced heart rate and 
increased heart rate variability could mean that the driver is drowsy, but also that the driver is 
relaxed. The question of causality is a severe problem for psychophysiological data in general 
(Persson et al., 2020). Moreover, there is considerable interindividual variability in the 
manifestation of psychophysiological parameters, this implies that individual baseline data should 
always be considered when inferring physiological variables. 

4.1.4. Estimation performance 

Apart from evaluations of classification performance (see section 4.6.2.4), which involves the 
additional step of interpreting classifier input variables, the quality of the input variables themselves 
can be characterized in terms of Accuracy, referring to bias i.e., a systematic error between true 
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and estimated value of a variable; the Precision, which refers to the reproducibility of estimates; 
data-loss, which refers to the amount of data lost in a sequentially sampled signal, and latency, 
which is the time it takes to produce an estimate (Holmqvist et al., 2023). The following general 
principles may be applied: 

• Accuracy and precision. The accuracy and precision of a system affect subsequent 
classifier performance. In order to simultaneously minimize false positives and negatives 
and maximize true positives and negatives for a classifier relying on input data, the 
constant and variable error should be minimal. Exact tolerances depend on the application. 
For instance, errors in gaze estimates in the order of a few degrees may be acceptable 
when the data is used to assess whether the driver is looking at the road or not.  

• Data loss. A system may sample data at a given frequency, but only yield useful estimates 
for a subset of those samples. Any data loss should not exceed the frequency at which 
derived measures (i.e., classifications) are evaluated to infer driver fitness. Systems should 
monitor the presence of reliable data and provide warnings when insufficient data is 
available. 

• Latency. The time between an event and the corresponding response to that event 
produced by a computer system should be below the perceptual threshold for an intuitive 
understanding of the causal link between the event and the response to that event. 

 

4.2. Distraction 

In the most stringent automation mode (i.e., Continuous mediation), a driver is required to be able 
to take over driving tasks at any given instant, even in cases where automation fails without 
notifying the driver. To be able to do so, drivers must be physically available and have sufficient 
situational awareness to respond adequately at any time. Physical availability implies that sleep or 
high levels of drowsiness violate driver requirements (see section on fatigue); and the driver must 
be in a physical position to actually take over; that is, in future vehicles that accommodate the 
possibility of novel seating arrangements, the driver seat must face forward. In addition, drivers are 
not allowed to engage in many non-driving related activities, such as the use of mobile phones, 
tablets or laptops. At higher levels of automation, these requirements can be relaxed. 

Situational awareness is an ambiguous and multifactorial construct, and a thorough assessment 
requires both a comprehensive characterization of the situation, and to peer into the mind of the 
driver to evaluate the extent to which their knowledge of the situation aligns with the ground truth. 
This is, at least currently, not technically possible. Instead, proxies must be used. Specifically, 

1. awareness of the situation at the very least requires a driver to see the road and traffic 
ahead. That means that the driver must have their eyes on road most of the time 
(depending on information decay rate; Senders et al., 1967).  

2. a driver/vehicle unit must have sufficient situation awareness, and depending on the 
automation mode, engagement in non-driving related tasks may be detrimental. Detection 
of many non-driving related activities provides an indication that the driver’s situational 
awareness can be insufficient.  

At present, the most practical method to classify whether the eyes are on road and whether non-
driving related activities are performed is by means of computer vision. It should be noted that 
ultimately, the performance of these systems should be evaluated in terms of their ability to 
correctly discriminate between an attentive and distracted state. This depends not only on the 
ability of a system to detect gaze and non-driving related activities, but also on the scientific validity 
of the notion that eyes-off-road and engaging in non-driving related activities are indeed indicative 
of distraction, what a driver’s affordances are in terms of sampling from essential sources of 
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information such as the speedometer, and how these notions are affected by driving context. 
Nevertheless, in addition to the general recommendations for computer vision systems provided in 
section 4.1.1, the following recommendations are specifically applicable to distraction monitoring: 

• The least obtrusive implementation for simultaneous gaze tracking and non-driving related 
activity detection is by cameras mounted in the vehicle cabin, monitoring the driver face 
and body. 

• Human glance behaviours can use either an ‘owl’ strategy – turning the head in its entirety 
to focus on a target, or as following a ‘lizard strategy’ – turning the eyes, or a combination 
of the two. Drivers typically follow the lizard strategy for glances to objects close to the 
forward field of view, whereas the owl strategy tends to be followed for more distant 
glances. Methods that infer gaze direction from head pose are thus only suitable to track 
owl-like glances and impose the risk of missing cues present in eye-movements. 
Therefore, methods that infer gaze from tracking the eye directly should be preferred over 
head-tracking. 

• The quality of gaze estimation improves with increasing camera resolution and frame rate. 
However, reasonable accuracy can be obtained even with low resolution, low frame rate 
cameras, as evidenced by studies that extract gaze from webcam data at a resolution of 
640*480 pixels, and with a sampling frequency of 16 frames per second (Lin et al., 2013).  
Given the pace of technological advances, it is plausible that most currently commercially 
available camera systems exceed these specifications, and thus provide sufficient 
resolution and frame rate for eye-gaze tracking purposes. It may be noted that whereas 
low-quality systems may provide sufficiently detailed data for estimating gaze, these 
systems are not suitable for applications where high-speed eye-movements (i.e., 
saccades) need to be recorded, which precludes applications for, for instance, motion 
sickness detection.  

• The system should be able to recognize conditions that indirectly imply that the driver is 
unable to see the road, for instance due to the obstructions of their field of view. 

In addition to the performance measures outlined in section 4.1.1, the following additional 
considerations apply specifically to data acquisition for the purpose of inferring distraction from eye 
gaze.  

• Accuracy and precision. As an example, method to classify distraction, the AttenD 
algorithm (Ahlstrom et al., 2013; Ahlström, Georgoulas, et al., 2021) classifies a driver as 
distracted when the gaze is outside the field relevant for driving. Bias (i.e., inaccuracy) in 
gaze estimation could inadvertently cause false alarms or misses, and noise (i.e., 
imprecision) contributes to data loss and reduces the reliability of the system overall. 
Notwithstanding, classification of distraction based on a general agreement of gaze with 
the part of the visual field related to driving, places much less stringent constraints on 
system accuracy and precision than other typical use cases for eye trackers such as when 
determining gaze targets. This implies that even systems that perform relatively poorly in 
terms of accuracy and precision (constant and variable errors in the order of degrees; 
Holmqvist et al., 2023), may still be sufficiently precise for classification of distraction based 
on gaze. 

• Data loss. A system may sample gaze at a given frequency, but only yield useful estimates 
for a subset of samples. Potential causes are for instance a gaze outside the camera’s field 
of view or blinking. The percentage of samples which do not yield useful estimates of gaze 
direction quantify the data loss. Blinking may account for approximately 2% of missing 
observations (Holmqvist et al., 2011). Any data loss should not exceed the temporal buffers 
for these to be updated sufficiently frequently. The system should be able to identify the 
cause of any data loss, in particular cases where the face is outside of the camera field-of-
view, since this information can be used to infer that the eyes are not on-road.  

• Latency. The time between an actual eye-movement and the output of the calculation to 
obtain the corresponding estimation is typically below 80 milliseconds (Holmqvist et al., 
2022). This precedes any additional time it may take a system to issue a warning, and is 
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significant in urgent cases when considering that typical driver reaction times vary between 
0.7–1.5 seconds (Green, 2000). It is known that a delay between a gaze shift and warning 
in the order of seconds causes drivers to misinterpret the warning as a false alarm 
(Fiorentino et al., 2023), that is, the causal link between the distraction event and issued 
warning will not be perceived. Therefore, very short latencies are required for distraction 
detection, and warnings should never be triggered when the driver is looking straight at the 
road.  

Wherever available, the system should use both direct and indirect methods for highest accuracy 
and reliability of detecting driver disengagement. In other words, direct observations on gaze 
direction and non-driving related activities may be combined with inferences derived from vehicle 
data such as steering inputs. 
 

4.3. Fatigue 
As for distraction monitoring systems, requirements for fatigue monitoring systems are dictated by 
the driver requirements and affordances set by the automation modes. In Continuous mediation as 
well as in Driver standby modes, drivers should be alert. Conversely, in the Time-to-Sleep mode, 
people are allowed to sleep. Here, the challenge is to get people to recover from sleep inertia when 
driver input is again required (see section 3.1.2). Most effects of sleep inertia dissipate within 30 
minutes, depending on prior sleep deprivations and the time of day in which a person awakens 
(Hilditch & McHill, 2019). A system being able to take these factors into account when deciding 
when to wake up the driver before a takeover request might be more feasible than monitoring sleep 
inertia in real-time. 
 
Predicting future fatigue is essential since knowing the progression of driver fatigue is needed for 
long term planning on who (i.e., the driver or automation) should drive and when and who should 
drive. Biomathematical fatigue models based on information such as amount of sleep, activities, 
personal characteristics, time of the day and caffeine intake may predict periods of increased 
fatigue (Mollicone et al., 2019). These models can be used in combination with activity trackers to 
register prior sleep (McCormick et al., 2012). In predicting sleep, it is also necessary to take into 
account differences in the development of fatigue for different automation levels, since drivers 
using automation are likely to become fatigued faster than manual drivers (Schömig et al., 2015; 
Vogelpohl et al., 2019).  
 
Fatigue can be task-related and sleep-related. The former is due to extended periods of high or low 
workload, while the latter is caused by a lack of sleep. Whereas these forms of fatigue have distinct 
causes and different remedies (see 3.1.2), their overt effects overlap. As of yet, there do not 
appear to be methods to determine the causality of fatigue symptoms through real-time driver 
monitoring systems. Therefore, the guidelines presented here address fatigue assessment in 
general, without discriminating its causes. Taken together, general requirements for fatigue 
monitoring systems in automated vehicles are that they should: 
 

• Assess fatigue in real-time and classify a driver as either alert, drowsy or asleep. 
• Forecast the progression of fatigue in awake drivers, to facilitate timing of upcoming 

transfers of control between human and automation. 
• Account for effects of sleep inertia, in cases where the automation facilitates sleep. 

 
Concerning methods to assess fatigue in real-time, the following considerations and 
recommendations should be considered: 
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• Eyelid parameters currently appear to be the most practical objective fatigue indicator. As 
an example, the PERCLOS (PERcentage of eyelid CLOSure) metric is often used to detect 
fatigue (Dinges & Grace, 1998; Trutschel et al., 2011). Other measures such as eye blinks, 
eye gaze patterns, and pupil diameter have also been suggested.  

• Although environmental factors, intra-individual, and inter-individual differences obscure 
the relationship between fatigue and many physiological measures (heart rate, respiration, 
and heart rate variability etc.), these metrics have an advantage over camera-based 
systems since data are available also in cases where the face is not within the cameras 
field of view (blocked by a nomadic device, out of position during automation, etc.). 
Physiological metrics, measured via wearable devices, are therefore recommended as a 
complement to camera-based metrics. 

• Since combinations of metrics appear to outperform measurements of PERCLOS alone 
(Bakker et al., 2021; Kerick et al., 2013), multi-modal and multi-feature approaches are 
recommended. 

• There are individual differences regarding what should be considered a long blink duration, 
a low percentage of eye closure, a large heart rate variability, etc. Because of the large 
individual variability in how symptoms of fatigue express, fatigue detection systems should 
make use of personalised algorithms, especially when estimating moderate levels of 
fatigue. This may not be needed when estimating severe sleepiness or sleep where the 
fatigue indictors are more evident (difficulty keeping eyes open, long eye closures, 
swerving out of the lane).  

• The latency (the time between the presence of fatigue and the detection of fatigue) in real-
time fatigue detection based on eye movements depends on the sensitivity of the 
measurement method as well as the required time windows to detect sleepiness reliably. 
This delay can range between 10 seconds and 5 minutes (Borowsky et al., 2020). At lower 
levels of fatigue, timing is not critical and a delay of several minutes can be tolerated. For 
microsleep events in a manual driving setting, the required latency is in the order of a few 
seconds.  

• In terms of validity, the method of real-time fatigue assessment that has the strongest 
evidence in scientific literature is electroencephalography (EEG). However, such systems 
require an EEG sensor positioned on the head, which is obtrusive even with wearable dry 
electrode solutions. Moreover, these systems are mostly used in research settings which 
allow for much better control of surrounding electrical fields that affect EEG measurements, 
and where people are not subject to vibrations and accelerations as they are in a vehicle. 
This reduces the usefulness of EEG measurements in daily practice. 

 
As for the validation of fatigue monitoring systems: 
 

• Subjective sleepiness ratings can be used to validate fatigue measurement methods. Self-
assessment scales are often used as the ground-truth when designing sleepiness 
detection systems. The most used subjective fatigue and sleepiness indicator is the 
Karolinska sleepiness scale (Åkerstedt et al., 2014). It is recommended that fatigue 
detection systems are tuned to avoid false negatives corresponding to Karolinska 
sleepiness scale levels 8 and 9.  

• Whereas driving behaviour can obviously not be used as a sleepiness indicator during 
automated driving, it can be used to validate monitoring systems, next to observer ratings 
or self-assessment scales. Indicators of driving behaviour that indicate sleepiness are lane- 
and speed keeping and steering wheel movements (Liu et al., 2009). It is recommended 
that fatigue detection systems are tuned to avoid false negatives in connection to sleep-
induced line crossings.  
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4.4. Comfort 
Subjective measures are still the gold standard when assessing the levels of (dis)comfort in 
experimental research (Song & Vink, 2021). Objective assessment of comfort requires more 
research and development to enable reliable, accurate, unobtrusive, real-time detection of 
discomfort based on sensor data. It is therefore difficult to provide clear guidelines on real-time 
comfort monitoring.  
 
Estimations of discomfort based on lookup tables with potentially uncomfortable driving situations 
is more manageable. Instead of directly measuring the comfort level, discomfort is inferred from 
contextual variables derived from digital maps, traffic management systems, weather services, 
other driver state monitoring systems, etc. Upcoming situations with high a-priori risk of inducing 
discomfort may then be mitigated by suggesting a take-over from manual to automated driving (or 
vice versa) where such transfers are possible.  
 
General requirements for comfort assessment systems in automated vehicles include: 
 

• Safety should precede preference and comfort. For example, lane keeping assistant 
systems and adaptive cruise control systems may monitor driver behaviour during manual 
driving to infer preferences in lateral lane position and following distance to leading 
vehicles. Adopting such preferences will likely improve subjective experiences and comfort. 
However, such personalisation can have a negative impact on safety, for example if the 
systems adapt to an aggressive driving style, or if the automated functions start to drive 
less predictably (from an outside observer’s point of view). 

• Indirect comfort prediction, based on external data sources and lookup tables with a-priori 
defined uncomfortable situations can increase comfort by proposing timely take-overs, 
either by the vehicle or by the driver. An example is to propose automated driving when 
approaching an upcoming traffic jam, where the driving task is typically tedious. Information 
about how drivers activate or deactivate automation systems can be used to personalise 
the take-over suggestions. 

• Measurements of acceptance or rejection of take-over suggestions can also be used to 
personalise the threshold for minimum automation availability durations. For example, if the 
vehicle reaches a road stretch that affords Driver standby, but only for 1 minute, then this 
1-minute stretch could be supressed by setting it to "not available". The personalisation 
step would then be to adapt the maximum x-minute stretch that is supressed.     

• Context and driver state information can be used to increase comfort by adapting the 
timing of communication between the vehicle and the driver. This is similar to a workload 
manager, with the difference that it tries to avoid discomfort rather than overload.    

4.5. Techniques for prediction of (near-)future driver states 
A central concept in MEDIATOR is that of time-to-driver-(un)fitness. Accurate forecasts of such 
time budgets are critical when deciding if and when either the driver or automation should control 
the vehicle. Obtaining predictions on these time budgets can be achieved in various ways, and to 
stimulate innovation it may not be pertinent to prescribe particular forms of the implementation. 
Notwithstanding, in the Mediator system, the decision logic worked by means of decision trees 
(Bakker et al., 2023). The decision trees use current estimates of distraction (see section 4.2) and 
fatigue (section 4.3) obtained through driver monitoring systems and combine these with time 
budget affordances based on expert opinion to predict the time-to-driver-(un)fitness. These 
budgets allow for personalization and can also consider recent driver histories of the amount, 
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timing, and quality of sleep, the time since the last sleep period, time of day, workload and time on 
task, which is for instance also done to determine pilot fitness-for-duty in aviation (FAA, 2013). 
 
Prediction of distraction could also be based on monitoring of the information systems. For 
example, when drivers receive a message, it is likely that they will become tempted to read the 
message. Trials conducted in MEDIATOR demonstrated that people appreciated a proposal to 
switch to a higher automation mode when they were classified as distracted based on gaze 
estimates (Fiorentino et al., 2023). A further improvement in terms of road safety and possibly 
comfort may be achieved if automation is proposed even before a driver gets distracted, as sort of 
a proactive workload manager triggered when, for instance, a message is received. Further 
methods that may prove useful for more accurate predictions of time budgets are cybernetic 
models founded in control theory that predict the progression of driver states. An example 
applicable to sickness is the Oman model of motion sickness progression (Oman, 1982), which can 
generate predictions of future motion sickness taking into account personal sensitivity data and 
knowledge of the vehicle route (Irmak et al., 2021). 
 
From chapter 3 it is clear that many challenges remain before driver monitoring reach high 
accuracy and reliability for all individuals. Predicting future occurrences of impairments, or the 
development of an ongoing impairment, is even more challenging. For a prediction to be useful, it 
must be accurate both in terms of the actual driver state and in terms of temporal accuracy. For 
distraction, it is not possible to estimate the onset of the next distraction event. However, given 
information about ongoing non-driving related activities, it may be possible to give an estimate of 
the time until the driver becomes attentive again, based on statistics of typical task completion 
times. For fatigue, the development of sleep-related fatigue can be predicted with biomathematical 
models, but the accuracy of such models is not very good on an individual level (Van Dongen, 
2004). There are biomathematical models describing task-related fatigue as well, taking task 
complexity and driving time into account, but again, the accuracy is low on an individual level. The 
challenges are similar for comfort prediction, where future discomfort can be estimated based on a-
priori information about upcoming uncomfortable situations (see further section 3.2.3.3).  
 
Taken together, predictions of future driver states are uncertain and should not yet be used to 
make safety critical decisions. Areas of application where predictions can be used is for example a 
situation where the vehicle proactively suggest that the driver should switch to automation when 
approaching a traffic jam. This provides added value for the driver without compromising safety, 
under the assumption that the traffic jam assist function is as safe as a human driver.   
 

4.6. Evaluation procedures 
Existing regulations typically specify that vehicle manufacturers must provide type approval 
authorities with documentation that describes the technical implementation of systems in sufficient 
detail for the authority to assess the robustness and functioning of the system. However, in lieu of 
technical regulations or guidelines, ultimate proof that a driver monitoring system meets 
requirements is in testing classification performance for a representative sample of human 
participants. 
 
We propose that driver monitoring system testing should be conducted stepwise for (1) data quality 
and availability, (2) driver impairment detection performance and (3) intervention strategy, based 
on a combination of theory and realistic expectations. Data quality and availability are influenced by 
the ability of the sensors to track the driver’s features reliably under as many different 
circumstances as possible, including variations in personal characteristics, clothing and 
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accessories, weather related factors, etc. Using these data as input, algorithms estimate the 
driver’s level of impairment. Ensuring good feature quality is the basis for the algorithms to be able 
to function properly. The impairment detection algorithms can vary in complexity, in the type and 
amount of information they consider, and in the specificity of their output. Finally, the way in which 
the driver monitoring outcome is used for intervention – with direct warnings or as modifier of other 
systems – can differ. Evaluation procedures are needed for all three levels to effectively detect and 
prevent potential weaknesses in the systems. Step (3), evaluation of the intervention strategy, is 
covered in Mediator Deliverable D4.2 (van Grondelle, 2023) and will not be described here. 

4.6.1. Evaluation of feature data quality  
Since the number of combinations of idiosyncratic properties quickly becomes unfeasible large, it is 
recommended that data quality evaluations at this level are tested in a controlled setup, in a 
stationary vehicle or even in a lab setup. 
 
The extent to which idiosyncratic properties must be represented in the sample may depend on the 
type of classifier. For instance, to mitigate risks of bias in AI, machine learning techniques must be 
trained on representative data sets. In contrast, this is not the case for expert systems. 

4.6.1.1. Evaluation using pretended/acted impairments/behaviours 

As a starting point, the systems should be tested to verify that they can measure the base features 
that they are intended to measure. As a first step, this can be done by asking participants to blink 
slowly (verify eyelid opening metrics), to yawn and talk (mouth detection), to look in various 
direction (gaze direction) including over the shoulder (head tracking), and to use mobile phones 
etc. (driver activity recognition). Similarly, physiology-based systems should be tested to verify for 
example heartbeat and respiration detection. If the driver monitoring system is based on an end-to-
end system this step can obviously not be done. 

4.6.1.2. Study population 

To ensure high quality and data availability for all potential users, the systems must be tested on a 
broad range of the population. Therefore, people of different ages, genders, weight, height, body 
types, skin tone, ethnic groups, eye shapes, facial hair, etc., should ideally be included. Exempt 
cases are for instance children, as the typical minimum age at which one is allowed to drive is 
between 16–18 years. Individuals showing nonconformity with stereotypes (corner cases) should 
be considered carefully. In case of occupant monitoring, participants of all ages, including infants, 
should be included. 

4.6.1.3. Facial occlusions and body movement  

The effect of facial occlusions such as face masks, hoods, hand activities, glasses, and phones or 
laptops, should be evaluated. The latter is especially relevant in vehicles with automated driving 
functionalities. Also, detection and tracking of hands for recognition of driver distraction actions is a 
challenging problem. “Difficult” lenses and IR-blocking sunglasses should be included in the 
evaluations. 
 
Similarly, physiological sensors should be evaluated for motion artifacts in different body positions 
and under various degrees of motion. Non-contact sensors, for example in the seat or the seatbelt, 
should also be tested with different types of clothes.  

4.6.1.4. Light conditions 

There are frequent and sudden variations of lighting in real-life driving. These changes happen 
quickly and depend on daytime (day/night), weather, driving environment (streets lined with trees, 
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driving under a bridge) and artificial light (headlights, street lighting). Such conditions should be 
evaluated if the system use a camera sensor. These tests should also monitor for unintended side 
effects such as squinting in strong sunlight that causes the lower eyelid and eyelashes to occlude 
the pupil partially or fully, making it difficult to track the eyes.   
 

4.6.2. Evaluation of impairment detection performance 
Evaluation of detection performance should be based on actual, not acted, impairments. It should 
also be conducted in more ecologically valid environments rather than in a lab/office setting.  
 

4.6.2.1. Context and road environment 

Studies should be performed under various ambient conditions that may be encountered during 
driving. This may include, but is not necessarily limited to, day versus night-time driving, varying 
ambient lighting conditions, and driving on urban, rural and highway roads, which vary in speed, 
presence and type of other road users, and also the likelihood of distractions and fatigue occurring. 

4.6.2.2. Controlled experiment versus real life 

Findings obtained in experimental studies performed under laboratory conditions are not 
necessarily representative of behaviours in naturalistic driving. An illustration is the Hawthorne 
effect (Landsberger, 1958). Participants in driving studies may feel obliged to behave in some way 
differently than they would in real life. In addition, it is plausible that an inverse relation exists 
between the level of experimental control and ecological validity of a study. Further, confounding 
factors are limited by design in controlled experiments (Lu, 2009). For example, a homogenous 
study population in combination with strict experimental design where only sleepiness is allowed to 
vary will for sure find an effect of sleepiness on heart rate variability, but this does not mean that 
the same change in heart rate variability is caused by sleepiness in an uncontrolled situation, 
where the given change can also be due to some of the other confounding factors that also affect 
heart rate variability. The link between cause and effect is often weakened when moving from a 
controlled to a naturalistic setting. Therefore, it is desirable to also test systems in naturalistic 
driving studies or field operational tests which approximate real driving conditions as closely as 
possible. Alternatively, if simulation or simulator studies are used, the validity of the simulator as an 
alternative to naturalistic driving studies must be established, and/or rules should be derived which 
allow estimation of the real-world outcome given findings obtained in the simulator (Fors et al., 
2018; Talsma et al., 2023).  

4.6.2.3. Ground truth, annotations, and labelling 

Experimental conditions may be designed such that they induce certain driver states (Wörle et al., 
2023). For example, to manipulate fatigue, researchers can include conditions where participants 
are sleep deprived versus fully alert. Experimental manipulation of distraction is possible by 
manipulating the presence and/or workload associated with non-driving related activities. Similarly, 
discomfort can be induced by uncomfortable driving situations. In addition, it is desirable to quantify 
the extent to which the experimental manipulations indeed had the desired effect. For fatigue, 
study participants may report fatigue symptoms by means of the Karolinska sleepiness scale. For 
distraction, sufficient situation awareness can be verified via hazard perception paradigms, and 
non-driving related tasks can be quantified as device usage and task performance. For comfort, 
drivers can indicate their level of comfort in real-time by using for example pressing a button when 
they experience discomfort. It may be desirable to account for covariates such as workload and 
motivation, whether it is to remain alert, engagement in non-driving related tasks or the driving task 
itself. This can be achieved by motivating instructions and scenario descriptions, via incentives, or 
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similar experimental manipulations such as the choice of non-driving related tasks. Like the 
assessment of the constructs that are of primary interest (i.e., drowsiness, inattention), 
questionnaires can be used to evaluate the effectiveness of these motivating manipulations, to 
subsequently account for possible mediating effects in the statistical analyses. 
 

4.6.2.4. Detection performance  

To assess the quality of detection algorithms, metrics are required that reflect their performance. 
These metrics may be constructed using knowledge of the ground truth, as discussed in section 
4.6.2.3. and the estimates obtained from a classification algorithm. Given a ground truth and an 
estimate, where in the dichotomous case, both are either ‘positive’ or ‘negative’, a confusion matrix 
can be established. This confusion matrix specifies the number of observed combinations of 
possible ground truths versus the predicted states. For a single observation on a dichotomous 
variable, there are four possible outcomes: the ground truth and estimate are both negative (true 
negative), the ground truth is negative but the estimate is positive (false positive), the ground truth 
is positive but the estimate is negative (false negative), or both the ground truth and estimate are 
positive (true positive). A perfect classifier will have 100% true negative rate (specificity) and 100% 
true positive rate (sensitivity). Although there are algorithms that provide dichotomous estimates 
directly, many implementations instead yield an estimate of the probability of a positive outcome. 
The final estimate is then made by setting a criterion threshold for the estimated probability below 
which a negative classification is made, and above which a positive classification is made. By 
varying the criterion, the classifier’s specificity and sensitivity will change. This interplay is reflected 
in the so-called Receiver Operating Characteristic curve. The resulting curve will lie somewhere 
between the identity line for a classifier that does not perform better than chance, and a line where 
the true positive rate equals 1 for all false positive rates. Hence, the area under the receiver 
operating characteristic curve reflects the classifier’s performance, varying between 0.5 for a 
classifier that does not perform better than chance, and 1 for a perfect classifier. As guideline on 
the interpretation of the obtained area under the curve, values between 0.7–0.8 can be considered 
acceptable performance, 0.8–0.9 can be considered excellent performance, and anything above 
0.9 is outstanding performance (Hosmer Jr et al., 2013). In practice, a more nuanced evaluation 
could be implemented by also considering the relative importance (utility) of different outcomes in 
the form of a cost function which combines the probabilities of the alternative cells of the confusion 
matrix with their utility, and an optimal criterion may be chosen by optimizing this cost function. 
 
Ultimately, the goal of a Mediator system is to provide safety. Classifications of driver state 
variables provided by driver monitoring system will be used to inform a decision logic that mediates 
between the driver and vehicle on who is most fit to drive. Achieving this goal depends not only on 
performance of the driver monitoring system, but also on the intervention strategy and how the 
intervention is communicated to the driver. Guidelines on intervention strategies established in the 
Mediator project are described in Mediator Deliverable D4.2 (van Grondelle, 2023). A 
comprehensive systematic fatigue risk management framework that addresses prevention, 
monitoring, and mitigation of fatigue-induced risks during on-road long-term testing of automated 
driving functions can be found in Favaro et al. (2022). It is it is noteworthy that real-time driver 
monitoring is but 1 out of 20 countermeasures used to counter fatigue-induced risks. 

4.6.3. Ethics 
Ethical standards for any research involving human participants are generally aligned with the 
Declaration of Helsinki, which outlines ethical principles for medical research involving human 
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subjects1. A guiding principle is that the gained knowledge should outweigh any risk or discomfort 
while not taking precedence over individual rights and interests. For a driver monitoring solution, 
this means the system should work equally well for different types of people, and that the system is 
affordable and cost-effective. For evaluation purposes, an independent ethical review committee 
should judge the study, prior to the study being conducted. We recommend that all driver 
monitoring system evaluations involving study participants undergo an independent ethical review, 
to ensure that the study proposal, the information provided for participants, the informed consent 
form, and the data management plan aligns with the declaration of Helsinki. The information 
provided to the ethical review committee must be sufficiently detailed for the committee to decide 
whether it is pertinent that the research question be answered, whether the study design and 
number of participants are appropriate and theoretically sufficient to answer the research question, 
and whether the risk to participants is acceptable. 

4.6.4. Data Protection 
As of May 25, 2018, any case where personal data is collected must, by law, adhere to the General 
Data Protection Regulation2. This thus applies to implementation of driver monitoring system in 
vehicles, as well as to studies designed to evaluate these systems. In general, data should only be 
collected that is essential to a particular purpose and should be stored securely in anonymized 
form, meaning that any information that directly identifies, or which may be used to indirectly 
identify an individual person must be discarded. For driver monitoring solutions, this implies that 
personal data such as video should not be stored beyond its need for detection and prediction 
purposes. For evaluation studies, researchers must formulate a data management plan. This plan 
shall list all data types collected within the scope of the study, the purpose of their collection and 
their format. It should also detail who will be able to access the data and any used anonymization 
methods. A data protection officer should be appointed, who is the contact point for any concerns 
regarding data usage. 
 
Data protection notwithstanding, there is a growing consensus that data should be shared in order 
to maximize their utility. In MEDIATOR, the FAIR principle was adopted, which refers to data being 
Findable, Accessible, Interoperable and Reusable. In practice this means that anonymized and 
well annotated data should be shared in public repositories.  Numerous public repositories exist, 
and journals regularly offer options to include data in the form as online supplementary material to 
scientific articles. A global registry of research data repositories is for example made available by 
the ‘re3data.org’ initiative (Pampel et al., 2013), and a list of various repositories is also made 
available in the Open Access Directory3.  
 

 
1 Declaration of Helsinki: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-

research-involving-human-subjects/ 
2 EU (2016) GDPR - General Data Protection Regulation: https://gdpr.eu/tag/gdpr 
3 http://oad.simmons.edu/oadwiki 
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5. Discussion 
The presented guidelines integrate the state-of-the-art according to the literature with practical 
results from MEDIATOR. Because scientific knowledge and technical possibilities continually 
evolve, insights into the relation of latent constructs that contribute to driver fitness and the best 
way to operationalize, measure, and predict these constructs are subject to change. Therefore, 
suggested methodologies and recommendations on their implementation are best considered a 
starting point, or a means to an end, rather than a definitive conclusion on the optimal way to 
implement driver monitoring systems.  
 
It should be noted that much of the knowledge that is needed to formulate definitive guidelines with 
a reasonable scientific validity is still lacking, and that more (empirical) research is required to 
achieve a consensus on the operationalisation of factors that contribute to the construct of driver 
(un-)fitness, their interactions, and the accuracy and precision of driver monitoring systems 
intended to estimate these constructs. Also, it should be noted that it may not be desirable to 
prescribe technical implementations to measure factors that contribute to driver (un-)fitness, 
because this may hamper innovation. Suggestions have been made based on existing knowledge, 
but a guiding principle for any evaluation should be classification performance. 
 
Notwithstanding, the guidelines described in this report can be summarized as a set of high-level 
guidelines, or principles, and a set of more specific, tangible guidelines.  
 
General principles: 

• Minimally obtrusive sensors. Camera-based systems have several advantages here, since 
they have the potential to capture rich information about humans, objects, and their 
interaction. Unobtrusive sensing is needed to facilitate high adoption rates, to avoid 
deactivation, and to avoid interfering with drivers’ operation of the vehicle. 

• Real-time operation and timely detections. Impairment detection, and subsequent 
interventions, have different demands on acceptable latencies. Detection of early signs of 
fatigue is not time critical (order of minutes) while severe fatigue, microsleep, and long off-
road glances are time critical (order of seconds or less). In some situations, discomfort can 
be detected offline several minutes in advance, for example when approaching harsh 
weather or a traffic jam. Proactive impairment interventions, in contrast to reactive 
detection/intervention, is favourable. This requires forecasts of drivers’ future readiness 
levels. 

• Robustness to environmental conditions. System performance should not be significantly 
influenced by environmental conditions such as traffic, landscape, weather, and darkness. 

• Automation level dependent. The drivers’ responsibilities change with the level of vehicle 
automation, which in turn affects the requirements for a driver monitoring system. As an 
example, continuous distraction detection is highly relevant in manual and assisted driving. 
In higher levels of automation, where non-driving related task engagement is allowed, it is 
sufficient to ensure that the driver is attentive in relation to transitions of control. 

• Situational awareness. A driver/vehicle-unit should have sufficient situational awareness to 
be able to drive safely. With higher levels of automation, the responsibilities for situational 
awareness are gradually shifted from the human to the vehicle. Similarly, to be able to 
provide relevant impairment detections, a driver monitoring system should also be 
situationally aware and take contextual factors into account. For example, fatigue warning 
systems would benefit from knowledge about sleep history and driving time, and distraction 
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detection systems would benefit from knowledge about which areas in the surroundings 
that needs to be sampled to gain sufficient situational awareness. 

• Ecological validity. Final evaluations/testing of driver monitoring systems should be 
conducted in ecologically valid settings with naturalistically induced impairments. Lab 
testing can and should be used in earlier evaluation stages, for example, when testing if an 
eye tracking system provides high quality tracking throughout a broad range of the 
population. 

• Minimal intrusion on privacy. Driver monitoring systems should avoid privacy intrusions. 
For example, video data should be deleted continuously and should not be stored beyond 
what is needed for impairment detections.  

  
More tangible guidelines include: 

• Sensor related aspects: 
o Driver monitoring systems are not perfectly reliable. Therefore, critical, safety-

related systems should function independently from these systems. 
o Driver monitoring systems should self-diagnose, and the reliability of classifications 

should be considered by the system. Reliability may be improved by integrating 
information from redundant sources of information, and by combining 
complimentary information. For safety and for protection against interferences, a 
separate Controller Area Network bus is recommended. 

o Computer vision-based driver monitoring systems primarily rely on information 
derived from the eyes. To ensure that video data is suitable for subsequent 
inferences and robust to disturbances, it is recommended to use multiple infrared 
cameras, mounted such that the driver’s face is in the cameras’ sweet spot 
(typically 60-70cm from the face). 

o Vehicle based data, such as steering inputs, swerving, and lane departures, 
directly reflect safety critical performance, but is limited to manual driving. 

o Physiological data have limited specificity but can augment other sources of 
information. Contact sensors may be placed in the steering wheel to, for example, 
measure skin conductance, and sensors in the seat or seatbelt can be used to 
measure heart rate and heart rate variability.  

• Estimation performance: classifier performance depends on the quality of input data. For 
driver monitoring systems, input data are, for instance, gaze direction and eye closure, 
which are inferred from sensor readings. The quality of input data can be expressed in 
terms of accuracy, precision, data loss and latency. Threshold values for these metrics 
depend on application and situation. 

• Distraction: a state of distraction is typically inferred from gaze direction and engagement 
in non-driving related activities. These can be determined by computer vision systems. 
Gaze direction should be inferred from directly monitoring eye movements rather than 
head direction, because the eyes can move within the head. Typical system requirements 
are a resolution of at least 640*480 pixels and a sampling frequency of 16Hz, with a 
system latency in the order 0.1s. 

• Fatigue: typically inferred from eye closure. As for distraction, the most practical method to 
do so is by computer vision-based systems. This method can be augmented using vehicle-
based data, as lane- and speed-keeping and control inputs are indicative of fatigue as well. 
Forecasting fatigue is critical for higher automation levels, to ensure that future take-over 
requests can be met. To this end, information such as driver sleep history, time of day, and 
driving time, have found to be predictive.  

• Comfort: methods for real-time monitoring of driver comfort are still in their infancy. Current 
methods rely on inference of emotions from elements of facial expressions. However, 
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comfort may also be inferred from a-priori knowledge of (un)comfortable situations and 
previous preferences or may be predicted on the basis of knowledge of the road ahead. 
For instance, motion sickness may be mitigated by suggesting manual driving on 
provocative routes. 

• Prediction: a critical concept in automation is estimation of ‘time budgets’, which reflect 
how long a driver can be relieved from the driving task. This requires forecasts of driver 
states. 

• Evaluation: driver monitoring system performance is expressed in terms of the ability to 
correctly classify states. Due to the multitude of factors that affect performance, it should 
be evaluated empirically. Such evaluations should be ecologically valid, in that they reflect 
the range of situations and users that can occur in real-life. Performance should be 
expressed in terms of classifier sensitivity and specificity. 

 
Whilst it remains to be seen whether interior sensing will lower road deaths, the use of emotional AI 
and other biometric profiling raises other high-level societal risks (McStay & Urquhart, 2022). On 
one hand, the EU Vehicle Safety Regulation welcomes safety technologies and driver monitoring 
solutions, but at the same time, other regulations such as GDPR flag human-state measures and 
emotion profiling as risky. New guidelines must strike a balance between the two, weighting privacy 
risks versus safety benefits. For instance, a large online retailer that equips its vehicles with driver 
monitoring systems do not only use the system to reduce dangerous behaviours, but also to score 
and penalize personnel. Such use of DMS may be considered excessive, or even ‘Orwellian’, 
especially considering that these systems can be inaccurate4. 
 
Another practical consideration on driver monitoring systems is the added costs for vehicles. For 
vehicle automation to be broadly adopted by consumers, the technology should be attractive -it 
must offer readily apparent advantages over manually controlled vehicles and should also be 
affordable. A synthesis of multiple surveys (Elvik, 2020) indicates that a majority of consumers may 
not be willing to pay extra for (fully) automated vehicle functionalities. This synthesis also shows 
that there is considerable variability in what consumers are willing to pay for vehicle automation, 
with differences between countries, but also with skewed distributions within countries. Whereas 
some consumers are willing to pay more than the estimated added costs of automated vehicles 
($10,000 US), up to 60% of people are not willing to pay any premium for automated vehicle 
functionality. It is thus likely that a majority of consumers will initially find automated vehicles too 
expensive. However, the price of automated vehicles can be expected to fall as technology 
matures and vehicles are manufactured in larger numbers. 
 
The consensus, supported by accident statistics, is that the driver state variables of fatigue, 
distraction, (sudden) sickness, intoxication, and as a mediating factor, comfort, affect driver fitness. 
However, there are various outstanding issues in the science behind this. 
  

• First, the definition of the constructs is a topic of active scientific debate. For example, 
some people argue that distraction is a form of inattention, whereas others say it is the 
other way around (Regan et al., 2011), and yet others claim that it is futile to define 
distraction without first sorting out what it means to be attentive (Kircher & Ahlstrom, 2016).  

• Given that these are latent psychological constructs, there typically is not a single perfect 
measure that reflects their level. That is, their operationalization (i.e., how constructs, 
provided that they are well-defined, are best measured), may be inherently vague. 

 
4The Telegraph 2022: https://www.telegraph.co.uk/business/2022/05/22/amazon-installs-ai-cameras-monitor-delivery-

drivers/  
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• Numerous directional and mediating effects between the latent constructs can be 
postulated. As an illustration, Figure 2.1 graphically represents the relation between 
variables as they are considered in the present report. Note that this representation is likely 
to be an oversimplification. 

• In addition to other or additional relations between the state variables considered here, 
others may prove to be of importance to the notion of driver fitness. For example, driver 
experience and attitude to risk are not considered, but are known to affect behaviour 
(Hatfield & Fernandes, 2009). 

• Although fatigue, distraction, (sudden) sickness and intoxication are indicated in a large 
percentage of crashes, it is not known how an encompassing construct of fitness is 
predictive of safety; nor, for that matter, is it apparent how ‘safety’ should be 
operationalized precisely. Nor is the impact of a driver monitoring system on safety known. 
Here one may consider, for example, the likelihood of potentially dangerous situations; the 
likelihood of minor crashes; and/or the likelihood of major crashes.  

5.1. Future research 
The information presented in these guidelines outline a framework on how certain driver state 
variables can be measured, and under which conditions these systems should be evaluated to 
increase the likelihood that they will operate as intended in practice. However, apart from some 
minimum requirements for sensors to ensure that useful data are obtained, neither the literature 
nor results from MEDIATOR provide definitive answers on what is best practice, considering 
multiple alternative methodologies. In particular, the following research questions should be 
addressed in the coming years: 

• How can driver monitoring data be fused with external data such as digital maps and 
proximity data to determine if the driver is sufficiently aware of the surroundings given the 
current automation level? 

• How can multiple driver impairments be assessed simultaneously in uncontrolled 
environments with multiple confounding factors? 

• How can the cause of a detected driver impairment be determined? For example, is the 
driver fatigued due to sleepiness, underload, or overload. The distinction is important for 
correct countermeasure deployment. 

• How should comfort and emotion assessments go beyond stereotypical facial expressions 
analysis and reveal the psychological meaning of those signals? 

• How can various driver impairments be forecasted with sufficient accuracy and foresight to 
be useful when deciding if and when either the driver or automation should control the 
vehicle?   

• How do different driver impairments and their respective indicators, including all 
interactions, contribute to driver fitness? 

• How does driver fitness impact safety and how well should driver fitness be known to 
ensure safety (split out by different state variables)? 

• How should new hardware and data/sensor fusion techniques be used to improve 
accuracy and availability/uptime in case of motion artifacts, camera view obstructions, out 
of position scenarios, interference, etc.? What other considerations might contribute to the 
choice of different assessment sensors/techniques (e.g., cost)? 

 



 

MEDIATOR | Deliverable D4.3 | WP4 | Final 50 

6. Conclusion 
The presented guidelines integrate state of the art knowledge from the literature with knowhow 
from the industry and practical results from the Mediator project. In summary, a driver monitoring 
system should use minimally obtrusive sensors, operate in real-time with minimal latencies, be 
robust to environmental conditions, be adaptive to situational circumstances such as context, road 
environment and automation capabilities, and be respectful to privacy concerns. Final evaluations 
of driver monitoring systems should be conducted in ecologically valid settings, to ensure that 
sufficient performance is achieved under these conditions. 
 
The goal of driver monitoring is to increase road safety. Achieving this goal depends not only on 
performance of the driver monitoring system, but also on the intervention strategy and how the 
intervention is communicated to the driver. We believe that this is best achieved by combing 
warning and intervention strategies such as, for example, adapting the sensitivity of driver 
assistance systems when a driver is not attentive.  
 
Though knowledge is still lacking to be able to formulate definitive operational guidelines on driver 
monitoring systems, and though there are still limitations to the capabilities of driver monitoring 
systems, this should not prevent or delay their introduction in new vehicle types. Instead, available 
technologies should be used to address and mitigate impairments to the extent possible, starting 
with severe behaviours such as alcohol intoxication, microsleeps, long glances away from the road 
and incapacitation.  
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