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About MEDIATOR 
 
 
MEDIATOR is a 4-year project led by SWOV. It started in May 2019. MEDIATOR will develop 

a mediating system for drivers in semi-automated and highly automated vehicles, resulting 

in safe, real-time switching between the human driver and automated system based on who 

is most fit to drive. MEDIATOR pursues a paradigm shift away from a view that prioritises 

either the driver or the automation, instead integrating the best of both. 

 

Visions 
Automated transport technology is developing rapidly for all transport modes, with huge safety 
potential. The transition to full automation, however, brings new risks, such as mode confusion, 
overreliance, reduced situational awareness and misuse. The driving task changes to a more 
supervisory role, reducing the task load and potentially leading to degraded human performance. 
Similarly, the automated system may not (yet) function in all situations. The objective of the 
Mediator system is to intelligently assess the strengths and weaknesses of both the driver and the 
automation and mediate between them, while also taking into account the driving context. 
 
 
 

 
 
 

Figure 1. The Mediator system will constantly weigh driving context, driver state and vehicle automation status, while 

personalising its technology to the drivers’ general competence, characteristics, and preferences. 
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MEDIATOR will optimise the safety potential of vehicle automation during the transition to full (level 
5) automation. It will reduce risks, such as those caused by driver fatigue or inattention, or on the 
automation side imperfect automated driving technology. MEDIATOR will facilitate market 
exploitation by actively involving the automotive industry during the development process. 
 
To accomplish the development of this support system MEDIATOR will integrate and enhance 
existing knowledge of human factors and human machine interface (HMI), taking advantage of the 
of expertise in other transport modes (aviation, rail and maritime). It will develop and adapt 
available technologies for real-time data collection, storage and analysis and incorporate the latest 
artificial intelligence techniques, such as deep learning. 
 

Partners 
MEDIATOR is being carried out by a consortium of highly qualified research and industry experts, 
representing a balanced mix of top universities and research organisations as well as several 
OEMs and suppliers. The consortium, supported by an international Industrial Advisory Board and 
a Scientific Advisory Board, also represents all transport modes, maximising input from, and 
transferring results to, aviation, maritime and rail (with mode-specific adaptations). 
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Executive summary 
 
Vehicle automation has the potential to improve driving safety and driver comfort. The Mediator 
system aims to aid the realization of this potential by mediating between the driver and the 
automation on who is fittest to drive. Making this trade-off in a timely and safe manner requires 
both driver and automation fitness to be detected and predicted for the near future. Within this 
document, a method to quantify automation fitness, including time to automation fitness and time to 
automation unfitness are defined. In contrast to the driver state, which has known degraded 
performance markers such as fatigue or distraction as well as methods to quantify them, there are 
no established methods for assessing automation fitness. This deliverable provides the foundations 
and concepts that will allow the automation state module to estimate the automation fitness. The 
ideas and concepts developed in this deliverable will be implemented and validated at a later stage 
of the MEDIATOR project. 
 
Firstly, “degraded automation performance” is defined by situations in which the driver disengages 
or overrides the driving automation system (DAS) due to perceived ill-fitting actions, or a situation 
in which the DAS shuts itself or goes into some fallback due to within-system quality triggers, or a 
situation where the automation causes a crash with another road user or the infrastructure. 
 
Degraded performance as it manifests in markers (visible system behaviour) is the consequence of 
internal or external conditions to the DAS, which we refer to as factors. These factors expose 
functional limitations of the DAS and thereby have an impact on its fitness to drive. The resulting 
degradation of information quality circulating throughout the interconnected components will 
introduce uncertainty, at some point affecting the automation fitness. 
 
Understanding the factors leading to degraded automation performance and the resulting effects 
throughout the various components of the driving automation system (such as perception or 
decision making) is a key element of the process for estimating how long the automation may 
remain fit to drive. We have identified two categories of factors relevant for the automation state 
module as they can be measured and predicted and therefore used as indications for an upcoming 
degraded performance (illustrated in Figure 2): 

1. Factors related to system input such as adverse weather, dense traffic or roadworks, which 
can be measured and be predicted using driving context information such as weather 
forecast from an online service, 

2. Factors related to internal states of the system, which can be measured using information 
from the driving automation system to compute performance self-assessment indicators. 

 

 

Figure 2. Simplified system architecture and inputs of the automation state module 
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Taking the (simplified) system architecture of typical automation systems into account as illustrated 
in Figure 2, we estimate the current and predicted automation fitness using the correlation between 
the performance self-assessment indicators, the annotated vehicle behaviour, and the driving 
context. 
 
To quantify the automation fitness, an automation fitness scale is introduced, which corresponds to 
the rate of automation system deactivations or overrides (following the definition of degraded 
performance stated above). The higher on the scale, the less frequent are the system deactivations 
and so the more fit the automation. Using collected and annotated data for the driving automation 
system to be assessed, the goal is to correlate both the automation indicators and the driving 
context with the number of occurrences of system deactivations/overrides/fallback initiations per 
time unit normalized on the automation fitness scale 
 
The final outcome of the method is an estimation of an automation fitness score using both online 
observations of the automation indicators as well as online observations and predictions of the 
driving context. The estimation of the automation fitness score is then used to predict the time to 
automation (un)fitness using cut-off thresholds; for instance the time to automation unfitness 
(TTAU) would be the shortest time when the estimated automation fitness score becomes lower 
than a cut-off threshold. 
 

 

Figure 3. TTAU prediction using automation fitness score 

 
As an example in Figure 3 above, the AF score (in green) is estimated in a near future using the 
predicted driving context which forecasts a limited increased traffic density followed later on by a 
section of roadwork (black icons). The AF score is estimated to decrease during these two sections 
based on the correlation built with the prior data collection. TTAU can then be estimated as the 
shortest time when the predicted AF score becomes lower than a predefined cut-off threshold (in 
red), which will happen when reaching the roadwork. 
 
This research led to the main outcome of this deliverable, the functional requirements for the 
automation state module of the Mediator system. These are summarised in Table 1. Further 
refinements to the work presented here will be done as part of the actual development of the 
automation fitness module.  
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Table 1. Functional requirements for the Mediator automation state module 

Functional requirements (software related) 

AUTOMATION STATE MODULE 

The system shall estimate worst, likely and best-case time to automation (un)fitness based on automation fitness estimates 
for the current driving context 

§ The system shall estimate the current automation fitness 
o The system shall estimate the current automation fitness score 
o The system shall access relevant information from the automation system to estimate the current 

automation fitness score 
§ The system shall estimate the predicted automation fitness 

o The system shall estimate the predicted automation fitness score 
o The system shall access relevant external driving context information  

§ The system shall estimate when the driving automation system is unfit to drive 
o The driving automation system is deemed unfit to drive if it can no longer execute its defined dynamic 

driving task due to degraded automation performance (low automation fitness score) 
§ The system shall estimate the time to automation unfitness as the shortest time when the estimated automation 

fitness score becomes lower than a cut-off threshold 
§ The system shall estimate the time to automation fitness as the shortest time when the estimated automation 

fitness score becomes greater than a cut-off threshold 
§ The system shall estimate worst, likely and best-case scenarios of time to automation (un)fitness using the 

reliability of its inputs, both internal and external 

The system shall determine the active automation level as either none, supervised (CM), or unsupervised (SB, TtS) 

The system shall determine the automation state class, i.e. the reason for an upcoming change in automation availability 

The system shall determine the appropriate intervention type, i.e. a possible way to improve the automation fitness 

The system shall extract and collect context relevant information from the driving automation system to the context module 

RECOMMENDATIONS 

Drivers shall comply with the speed limit or lower 

The automation state module shall know the planned route 
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1. Introduction 
 
Vehicle automation has the potential to improve driving safety and driver comfort. To this aim, the 
Mediator system mediates between the driver and the automation on who is fittest to drive and 
supports the driver during his or her driving task. In order to determine who is fittest to drive, the 
Mediator system needs to estimate current and predicted driver fitness and automation fitness in a 
comparable manner. To this end, MEDIATOR needs to define numeral representations of driver 
and automation fitness; time to automation fitness (TTAF) and time to automation unfitness (TTAU) 
and the equivalents for driver (un)fitness. 
 
The work described in this deliverable is focused on providing the foundations and concepts for the 
automation state module. The automation state module is able to judge the current status of the 
driving automation system (DAS) considering the current and near future context information. More 
precisely, to allow a judgement on the current and near future status of the driving automation 
system, a quantification of automation fitness is substantial. Time to automation unfitness is 
defined for the currently active automation level as the estimated time until the automation is no 
longer able to perform its driving task. Conversely, time to automation fitness is defined as 
estimated time before an available but yet inactive automation level is able to perform the 
automated driving task. 
 
Part of the quantification for the time to automation unfitness is the definition and measurement of 
factors resulting in degraded automation performance. A factor is defined as a characteristic 
related to the driving automation system, which correlates with degraded performance. 
 
Chapter 2 clarifies the details on what degraded performance of a driving automation system 
means. The chapter also provides two categories of factors relevant for the automation state 
module as they can be measured and predicted and therefore used as indications for an upcoming 
degraded performance: 

1. Factors related to system input such as adverse weather, dense traffic or roadworks, 
2. Factors related to internal states of the automation. 

 
Chapter 3 gives an overview of the role and responsibilities of the driving automation system as 
well as driver’s participation in the driving task. As there are no driving automation systems with 
SAE level 3 and 4 available in the European market to date (April 2021), some assumptions will be 
taken all along the deliverable for these levels of automation. In MEDIATOR, the distinction for use 
cases has been made between Continuous Mediation “CM” (SAE Level 2), Driver Standby “SB” 
(SAE Level 3) and Time to Sleep “TtS” (SAE Level 4). In this chapter, we will explain why we will 
consider SB to be a subcase of TtS, and SAE Level 3 and 4 to have the same technological 
requirements for the driving automation system (DAS). We will also introduce the concept of 
“supervised” and “unsupervised” DAS to provide an explanation of the reasons behind the 
technical choices made.  
 
As illustrated in Figure 4 below, the automation state module relies on various information sources 
to feed its algorithms. This information is composed of: 
§ The driving context used to predict the occurrence of factors related to system input and 

detailed further in Chapter 4, 
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§ Information from the DAS to compute performance self-assessment indicators used to detect 
factors related to internal states of the automation and discussed in Chapter 5. Some context 
relevant information from the driving automation system could also be provided as output to the 
context module (such as the current ego-vehicle position and speed). 

 
Chapter 6 focusses on developing a methodology which combines both types of inputs to estimate 
the automation fitness and derive the various outputs of the automation state module. Such outputs 
will be based on worst, likely and best-case scenarios (similarly to the driver state module of the 
Mediator system) and built on the reliability of the inputs and outputs of the automation state 
module. 
 

 

Figure 4. Inputs and outputs of the automation state module 

 
Finally, Chapter Fout! Verwijzingsbron niet gevonden. summarises the main conclusions of this 
deliverable alongside open points, recommendations and assumptions to be taken into account 
during the development and evaluation of the automation state module. The chapter is concluded 
by the resulting functional requirements for the automation state module of the Mediator system. 
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2. Automation performance 
To rate the automation fitness to drive, we first need to define what we mean by automation 
performance. Performance can be classified in a multitude of different ways, depending on the 
perspective taken. There is the performance of the automation as defined by the system designer, 
focusing on whether the system limitations are kept within the designed limitations of the system. 
Then, there is the performance of the automation as perceived by the user, which of course is 
highly subjective, but is not the same as the designer’s perspective. Then, there can be things 
which is within the design, within what is ok for the user, but perhaps not optimal from a safety 
perspective.  
 

2.1. MEDIATOR definition of automation performance 
It is difficult to define good performance, more so than bad performance. Bad performance can be 
linked to risky situations and is easily defined with hindsight. Good performance may, on the other 
hand, be defined as good only until the context suddenly turns risky, which makes definitions 
difficult and problematic to put on a scale.  
 
For the automation state module in MEDIATOR, we will define BAD automation performance as: 

§ A situation in which the driver disengages automation due to perceived ill-fitting responses 
OR 

§ A situation in which the automation shuts itself off OR goes into some fallback function due 
to within-system quality triggers OR 

§ A situation where the automation causes a crash with another road user or the 
infrastructure. 

 
For GOOD automation performance, we will define this as: 

§ The driver is comfortable with the system’s actions AND 
§ System behaving according to design in the targeted Operational Design Domain AND 
§ The system keeps a speed and distance that allows it to avoid or at least mitigate crashes 

(depending on the suddenness of the event).  
 
Automation availability as well as assistance competence form a baseline of possible automation 
capability, which draws up the limits for automation performance. Automation performance is 
always judged within this, as a system cannot perform better than its specification.  
 

2.2. Assessing degraded automation performance 
In the context of this deliverable, a marker is defined as a manifesting characteristic of the driving 
automation system which correlates with BAD performance (see Section 2.1 above). To be able to 
use these markers to estimate degraded automation performance, we need to quantify and predict 
them. Markers for degraded automation performance are subjective and based on driver 
experience of “good” and “bad” automation performance. This can be contrasted with BAD and 
GOOD performance which we have explicit definitions of in 2.1. One example of a marker for 
degraded (but not necessarily BAD) vehicle performance is the vehicle accelerating without a 
known (to the driver) reason, or the vehicle driving over a lane marker if it is designed with the 
intention to always stay inside lane markers.  
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Degraded performance of the driving automation system (DAS) as it manifests in markers (system 
behaviour) is the consequence of internal or external conditions, which we will refer to as factors. 
Factors expose the functional limitations of the driving automation system and can have an impact 
on its fitness to drive (BAD or GOOD performance). Such functional limitations can result in 
degradation of the quality of the information that circulates throughout the interconnected 
components of the DAS and will introduce uncertainty, eventually affecting the automation fitness. 
 
Taking the simplified system architecture of typical automation systems into account as illustrated 
in Figure 5, an external (or environmental) condition such as rain is a factor for degraded 
performance as it causes sensor interference, which is a functional limitation of sensors. This 
makes automation unable to accurately detect and predict the behaviour of road participants. If 
sensing (perception) is affected by adverse weather, the decision capabilities (planning and 
control) are also affected – and, thereby, the automation fitness to drive. 
 
 

 
 

Figure 5. Simplified system architecture and inputs of the automation state module 

 
Two categories of factors will be used by the automation state module and described further in this 
document (in particular the elaboration of their quantification methods): 

1. Factors related to the DAS input as detailed in Chapter 4: 
a. Internal conditions, like hardware issues or sensor unavailability, which could be 

detected by the automation system (but possibly difficult to predict), 
b. External conditions, like rain, which could be quantified using a weather forecast 

online service, 
2. Factors related to internal states of the automation, which could be quantified by 

performance self-assessment indicators e.g. a measure of how well a component is 
performing. These factors are described in Chapter 5. 

 
The interest in using both categories of factors is that they have complementary strengths and 
weaknesses about fitness assessment. The factors relating to system input can be measured 
online and be predicted to some extent depending on the sources they rely on. The internal state 
related factors on the other hand are only measured online, but give a more accurate estimate of 
the current automation fitness since measured at the core of the system, but are dependent on the 
self-awareness of the system. Combining these factors and their quantifications to derive the time 
to automation (un)fitness (BAD or GOOD performance) predictions will be developed in Chapter 6. 
 
Please note that there will be no attempt at detecting unknown unknowns, that is, situations where 
the driver may believe the system behaves in a non-optimal way but which cannot be detected by 
the Mediator system or automation system sensors. This instead forms a limitation of the 
automation state assessment. 
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3. Automation systems 
Vehicle automation refers to systems that use steering, braking and acceleration to assist drivers in 
the task of operating a vehicle. SAE, the Society for Automotive Engineers, defines six levels of 
automation, SAE levels 0-5. In MEDIATOR, the distinction for use cases has been made between 
CM (SAE Level 2), SB (SAE Level 3) and TtS (SAE Level 4). In this chapter, we will explain why 
we will consider SB to be a subcase of TtS, and SAE Level 3 and 4 to have the same technological 
requirements for the driving automation system (DAS). We will also introduce the concept of 
“supervised” and “unsupervised” DAS to provide an explanation of the reasons behind the 
technical choices made.  
 

3.1. Supervised and unsupervised DAS 
In this section we will introduce the concept of “supervised” and “unsupervised” DAS, which are the 
two categories of DAS that will be used in the remainder of the report. First, we will make the 
connection between the SAE levels and the technical requirements on the system. Then, we will 
cover the human factors reasons behind that conclusion. Finally, we will discuss the availability of 
supervised and unsupervised systems on the European market at the time of writing (April 2021).  
 

3.1.1. Connections between SAE levels and supervised / unsupervised systems 
In this document, we will hereafter use two broad categories of DAS to clarify the system design 
and where the responsibility lies for driving safety. When the driver gets steering / brake / 
acceleration support from the DAS, we will refer to it as a supervised type system. When the 
automation operates the vehicle and the driver allowed to look away from the road and perform 
other tasks, we will refer to it as an unsupervised type system. In supervised systems, we include 
SAE Levels 1 and 2, and in the unsupervised systems we have SAE Levels 3 to 5. This distinction 
is made due to a need of determining the responsibility of the ADS and the driver in each of the 
cases, as we consider SAE Level 3 and 4 to have the same basic technological requirements for 
the driving automation system (DAS). 
 
In SAE Level 3 a handover request can be given by the ADS to the driver at any time, e.g. due to 
unexpected changes in the driving conditions. Since the handover request can be given at any 
time, the driver of the vehicle need to be prepared to take over control within e.g. 10 - 60s and can 
hence theoretically relax while in this mode but not sleep. Possibly, this level might not have limited 
and explicitly mapped ODD (Operational Design Domain). That is, the vehicle can at any time 
request the driver to switch from unsupervised driving. The vehicle remains responsible for the 
driving task until the driver has completed the switch from to driving again. This would include 
“chauffeur” type functions for driving in traffic jams on motorways.  
 
In SAE Level 4, a handover request is only given at planned locations/times or not at all, thus 
enabling the driver to relax or sleep. Examples of SAE Level 4 systems are “robot taxis” with a 
limited ODD, e.g. a certain part of a city, a parking garage, or others. An SAE Level 4 system can 
also constitute a system that parks a vehicle using full automation without any need for handover 
requests or a driver present in the vehicle.  
 
In SAE Level 5 there is no need for handover requests ever; the vehicle is always able remain in 
control. The main difference between SAE Level 4 and 5 is that in SAE Level 5 systems can 
operate in an unlimited ODD. It is questionable if we formally will ever experience an SAE Level 5 
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system since no manually driven vehicle can operate in an unlimited ODD today, e.g. in theory 
ranging from highways to tight parking spaces, off-road driving on icy paths, hill climbing in the 
desert and driving on Mars. 
 

3.1.2. Human factors aspects of supervised and unsupervised DAS 
Research on the human factors as well as automation side of DAS has advanced since the 
initiation of the MEDlATOR project. Human factors research has over the years pointed out issues 
with hand-over requests in SAE Level 3, where the driver is expected to take back control in e.g. 
10 seconds (starting with e.g. Blanco, Atwood, Vasquez et al., 2015). In a SAE level 3 DAS, the 
system is responsible for both executing and monitoring the driving task, and for asking the driver 
to take over when it assesses it cannot handle a situation (the driver is responsible for fallback). 
There is however no requirement on the minimum time between the request of such a handover 
and the time the system needs to detect a system failure. If such a time is not specified, a 0 second 
take-over-time must always be assumed for the worst case. Additionally, the driver may not 
necessarily take control as instructed.  
 
These two cases lead us to the conclusion that drivers cannot be allowed to perform other tasks if 
they simultaneously may need to handle a safety-critical situation at any moment. As a 0 second 
take-over-time or a lack of driver action at the end of a transition period may cause a risky 
situation, we do not accept this behaviour from the system. Instead, we will need to design a Level 
3 system with a fallback.  
 
For the automation state module, we have therefore decided not to consider the MEDIATOR ‘driver 
standby’ (SB) level as a level separate from ‘time to sleep’ (TtS) for unsupervised systems. From a 
technological standpoint, the system capabilities for SB and TtS are the same. If the DAS needs to 
handle the fallback task, the DAS needs to know its ODD and be fully capable in all ways to handle 
the fallback task safely within that ODD. In neither SB nor TtS we can fully rely on the driver being 
ready and available to resume control – the DAS always needs to be able to cope alone should 
something happen to the driver. For an unsupervised system in an evolving situation (context) 
where the system would need to enter a fallback, a driver might also prefer to resume control and 
continue driving instead.  
 
There are high demands placed on the HMI in the DAS to ensure that the driver is capable of 
resuming control when choosing to do so, to be fully aware of the need to monitor or not, how a 
transition to/from unsupervised driving is made, and so on. The MEDIATOR project is providing 
essential research on some difficulties with the SB subcase of unsupervised driving, like driver out-
of-the-loop or driver on-the-loop and how it can be mitigated by HMI design (see previous work in 
MEDIATOR). These same issues arise in a TtS situation, and in neither of the two cases we know 
exactly how far ahead in time we might have a risky situation the driver needs to handle. Either 
way, for a driver to be allowed to resume control, something like the Mediator system will be 
essential to identify driver readiness, to support the driver in transitions, and to design automation 
to facilitate the transitions between system and driver.  
 

3.1.3. Availability of supervised systems 
All DAS available in Europe at the time of writing (April 2021) are supervised systems. In other 
words, they require that a driver is monitoring traffic as well as system performance and intervenes 
if necessary. This maps to the Mediator term “CM”, “Continuous Mediation”, where the project 
focus lies on finding and maintaining the optimal task load for the human driver. A CM or 
supervised system in Mediator terms may fail at any given time, so the driver always needs to be 
there and aware of traffic as well as the system’s capabilities or lack thereof.  
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Table 2. Available supervised ADS 

Available supervised 
DAS 

Driver supervision Fallback functions Included in 
MEDIATOR? 

Active distance 
+ steering assist 
Speed range: 

0 – 130 kph 

Hands on wheel required If hands off wheel detected, speed reduction 
(but steering continues with possible stop in lane 
functionality) 

Yes 

Hands off / Driver eyes 
on-road required 
Mapped to highways only 
(GM Supercruise) 

While still active, inform driver to look back at the 
road if eyes off-road glance duration > x seconds 

No, not currently 
on the market in 
Europe 

 
3.1.4. Availability of unsupervised systems 

To date (April 2021) there are no unsupervised systems on the market in Europe for personal 
vehicles. Unsupervised systems comprise both MEDIATOR terms “SB” (driver standby) and “TtS” 
(time to sleep, driver long time out of the loop), and both allow the driver to completely disengage 
from the driving task for a shorter or longer period of time. In terms of SAE levels, this corresponds 
to SAE L3 and upwards. An unsupervised system requires that the automation system is available 
and competent for every case where it allows itself to be activated, as it cannot rely on the driver to 
resume control in a timely fashion. An unsupervised system always needs to have a fallback 
strategy if anything unexpected happens, as it cannot rely on the driver will resume control in a 
timely fashion. 
 

3.2. Implications for automation performance estimation 
For automation performance and state estimations, the automation will need a much better self-
estimation for unsupervised driving than for supervised driving.  
 
For supervised driving, the driver has the final say for vehicle behaviour. Thus, speed 
recommendations might not need to be followed, and if not followed may result in worsening 
automation performance and a need for the driver to be more alert. For unsupervised driving, the 
automation system is responsible for the fallback task. Specifically, the unsupervised system will 
need to cope with changes in environmental conditions, speed changes and other actions, and 
automation performance will always need to be good enough within the bounds of what automation 
decides. This will not be possible for the driver to challenge without resuming control from 
automation. For an unsupervised system, the driver might not appreciate the fallback task initiated 
by the system, and choose to resume control instead.  
 
For automation state estimation, we will as previously explained consider SB and TtS in the same 
“unsupervised driving” category. Any system which allows the driver to be out of the driving loop by 
performing a different task will require the same high level of performance within its operational 
design domain as one which allows the driver to sleep. It will also need to be able to perform a 
fallback task if the driver does not resume control when asked.  
 
In addition to the automation state estimation, i.e. when and where supervised or unsupervised 
system functionality should be made available to the driver, the automation needs to be able to 
estimate its automation performance while in supervised driving mode. The automation 
performance in supervised systems is, simply put, how capable it is at executing a Dynamic Driving 
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Task (DDT). The better the performance the vehicle can provide, the higher the requirements on a 
HMI solution to keep the driver in the loop and doesn’t make them “check out” (Victor et al., 2018). 
Moreover, the automation performance level might be needed in order to change the HMI or even 
alter system behaviour to provide other types of information for anticipated or detected changes in 
the automation performance, e.g. due to changes in external conditions or the types on road the 
vehicle is currently driving on. 
 
For the unsupervised mode, automation state estimation will need to assess the time available until 
the initiation of a fallback task, which the driver may or may not allow to continue. If the driver does 
not wish the car to enter the fallback, they will need to resume control instead. Thus, automation 
state estimation for the unsupervised systems will focus on determining the end of the ODD. The 
methodology will by and large otherwise remain the same.  
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4. Factors for degraded performance 
A functional limitation is a technology constraint that can originate either in the system design 
(sensors chosen for the system, elements defined and taken into account in the decision making 
process, maximum torque or acceleration), or in the physical property or resolution limits of the 
components (e.g. cameras becoming blurred by rain). 
 
A factor for degraded system performance is an internal or external condition, which exposes the 
functional limitations of the driving automation system (DAS) and has an impact on its fitness to 
drive. Functional limitations originate in the component(s) directly affected by the factor, resulting in 
effects which propagate throughout the interconnected components of the DAS architecture. 
 
As an example, an external (or environmental) condition such as rain is a factor for degraded 
performance as it causes sensor interference, which is a functional limitation of sensors. This leads 
to the fact that with bad enough sensor performance, automation cannot accurately detect and 
predict the behaviour of road participants, affecting the decision capabilities (planning and control) 
– and, at some point, the automation fitness to drive. 
 
Factors and their impact on performance are described further in sections 4.1 and 4.2. The first 
section discusses the functional limitations of sensors, which are an important contribution in 
degraded performance. The second section summarises these limitations alongside with detailed 
examples of factors affecting performance. 
 
Assessing the occurrence of such factors ahead of time is important for the Mediator system to 
estimate the time to automation (un)fitness as they are indications for potential degraded system 
performance. Section 4.3 focusses on establishing a quantification of the external environment, the 
driving context, which can be used to predict the occurrence of factors.  
 
From the automation perspective, performance self-assessment is also a valuable input for the 
automation state module. Self-assessment can continuously highlight degraded performance, not 
only when the system is presumed to undergo the effects of factors estimated through the driving 
context. Chapter 5 will address such self-assessment capabilities and introduce self-assessment 
indicators that could be used to quantify the automation performance. 
 
Finally, Chapter 6 will outline a methodology to estimate the time to automation (un)fitness using 
both the factor assessment and self-assessment indicators, and which will be included in the 
automation state module. 
 

4.1. Sensor limitations 
Driving automation systems use a multitude of sensors to interpret the surrounding environment 
near the vehicle. Perception uses sensors to continuously scan and monitor the environment, 
similar to human vision and other senses. Localization and mapping algorithms calculate the global 
and local location of the ego-vehicle and map the environment from sensor data and other 
perception outputs. In general, robust and reliable perception, localization and mapping are 
required in order to make accurate and reliable decisions for vehicle control. 
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All sensors, including the most intricate sensor technologies, such as radar (RAdio Detection And 
Ranging), lidar (LIght Detection And Ranging) and camera, have points of strength and weakness 
in relation with perceiving environmental situations. All mentioned sensors are based on 
electromagnetic waves and they thus all share similar properties. The referred weakness are due 
to the selected implementation (design), which is based on automotive sensor requirements 
(including cost, size, weight and power consumption). 
 
In Table 3, main advantages and disadvantages of different types of perception sensors for 
automotive applications are listed. 
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Table 3. Advantages and disadvantages of perception sensors (from Mohammed et al., 2020) 
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4.1.1. Radar 
Radar uses radio waves to detect objects and determine relative positions and relative speeds, and 
most current automotive radars are capable of measuring target angle (in azimuth). Radar 
performance in adverse weather is degraded compared to in good weather conditions. Rain, wet 
snowfall and spray from other vehicles have the most impact, causing a reduced range of radar 
detections and interference possibly creating of false targets. Although the radar performance in 
wet surroundings degrades, it outperforms lidar and cameras under the influence of rain. The radar 
is not impacted by the presence of airborne particles (e.g., dust and smoke) because of its 
wavelengths, which are much larger than the characteristic dimensions of dust. 
 
Radars may be a great option for all weather conditions, but active signal interference is still a 
matter of concern. For instance, in high-density traffic conditions, radar systems may pick up other 
vehicles’ radar signals, causing false detections, interference and uncertainty. Beyond weather 
conditions, radar handles darkness conditions well, but it has poor resolution, making it difficult to 
distinguish pedestrians, especially children. Radar also cannot reliably detect stationary objects 
(e.g., pedestrians waiting to enter a roadway) 
 

4.1.2. Lidar 
Lidar uses scanning lasers to measure distances to surfaces, producing a three-dimensional map 
of detailed shapes which can be constructed after moving through the scene and taking multiple 
snapshots (also true for radars and cameras). Lidar is capable of object detection in low/no-light 
conditions, but like cameras, is unreliable in adverse weather and when road surfaces are wet or 
reflective. Lidar performance in extreme weather conditions is not as strong as expected, because 
adverse weather conditions increase the transmission loss and decrease the reflectivity of the 
target. In particular, fog has the greatest impact on the ability of lidar, more than snowfall and rain. 
Performance can also be reduced with background illumination such as the one coming from the 
sun (especially at lower wavelengths). 
 
The challenge in some fog conditions (which varies depending on a combination of fog molecule 
size and density, and the electromagnetic wavelength) is that many transmitted signals are lost, 
resulting in reduced reflected power from the target. Reduced power alters the signal-to-noise ratio 
of the lidar sensor and reduces the likelihood of target detection, which leads to degraded 
perception performance. The raindrops’ intensity, size and shape drastically influence the 
attenuation rates of lidar. As rainfall intensity increases, the likelihood of lidar false-positive errors 
increase (although there are techniques of mitigating the effects of rain). 
 

4.1.3. Camera 
The human driving task is based on the visual analysis of the surrounding vehicles, obstacles and 
road signs and cameras can provide some of this information useful for automated operation. The 
camera can acquire the image and record contour, texture, colour distribution and other information 
of the object from a certain angle. Therefore, cameras are used to complete target recognition and 
target tracking tasks, including lane detection, pedestrian and vehicle identification and local path 
planning, but the camera is very affected by the adverse climatic conditions. In an aerosol 
environment, the camera decreases its visibility and contrast, and it is unreliable for object 
recognition. Moreover, a camera is not recommended for environmental detection and vehicle 
control tasks in foggy weather.  
 
Snow also affects the mechanical operation of the camera when positioned outside the vehicle. It is 
also difficult to use data generated by the camera for lane detection, due to frost or droplets of 
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moisture on the glass in front of cameras if mounted behind the front windshield. Moreover, the 
camera functions poorly in low-light conditions (from dusk to dawn), on slick surfaces where there 
are problems of glare and in low standing sun scenarios. The camera also requires a reasonable 
contrast between the target and the background. 
 

4.1.4. Other limitations 
Finally, yet importantly, the system could experience some technical problems that could at least 
partially compromise the proper functioning. Driving automation systems need to be able to detect 
and identify their sensor and perception failures and/or degradations to safely manoeuvre the 
vehicle accordingly to the level of the failure. 
 
Sensor fusion permits the use of multi-sensor information to calculate, recreate the environment, 
and generate dynamic responses, resulting in a consistent and accurate representation of the 
vehicle’s surroundings and position for a safer navigation: some sensors may be redundant under 
some environmental conditions and other may be complementary, assisting in positive cooperation 
to reach an accurate obstacles detection. This means that just because one sensor type or one 
individual sensor is degraded, the system as a whole might be able to balance and still have good 
environmental perception.  
 
When automated systems have to rely on the visual road markings (e.g., road lane lines), under 
heavy rainfall and snowfall, reliability is an issue not easy improved. Ultrasonic sensors combined 
with short-range radar can enable the vision system to have an increased performance in lane 
marking detection. 
 
To overcome the single technology gaps and to increase the DAS perception robustness a fusion 
perspective is advised, to make the DAS be able to cope with different environmental driving 
scenarios (e.g., weather, light, road geometry, road changes…). Perfect perception will always be 
dependent on what the different sensors have been trained on, and gaps may always remain.  
 

4.2. Factors and functional limitations 
A factor for degraded performance generally affects one or several components of the automation 
by exposing the functional limitations of these components. Such functional limitations result in 
degrading either the quality of the information that circulates throughout the interconnected 
components or introduces uncertainty, eventually affecting the automation fitness. 
 
Taking the (simplified) system architecture of typical automation systems into account as illustrated 
in Figure 5, environmental factors do not point to a specific component since any of them can be 
directly affected depending on the factor in question. However, once a component is affected, the 
effect will always propagate following the same interconnected components. Each automation 
system relies on a specific design chosen by the DAS provider (e.g., sensors, system architecture, 
component logic and limitations) to fulfil its driving task. Functional limitations, and therefore also 
factors for degraded performance, are specific to each automation design. 
 
As a first example, if an external factor reveals functional limitations in a sensor, then the effect 
might propagate through the sensor fusion to the perception (and localisation) component and to 
the decision making that might stop controlling actuators. Another example of a functional limitation 
is the maximum steering torque assistance; the steering torque is measured via a vehicle sensor 
and could exceed a threshold in some conditions e.g. high ego speed in a sharp curve. If so, the 
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decision making may deactivate the steering assistance. Such factors do not affect sensors or 
perception, but still affects the performance of the automation. 
 
The factors and functional limitations identified in Table 4 are based on Table 4.1 in D1.1 
(Christoph et al., 2019) which summarises general knowledge on actual supervised systems and 
on sensors limitations discussed in Section 4.1. The content will vary depending on DAS provider 
and, on the type and ODD of every DAS. 
 
For readability, the factors in Table 4 are grouped based on their origin (in bold). It must be noted 
that factors with the same origin might not lead to the same functional limitation (examples of 
functional limitations are often listed). 

Table 4. Factors and functional limitations 

Factor Functional limitations 

EXTERNAL CONDITIONS  

Weather conditions 

e.g. rain, snow, fog 

Interferes with or reduces maximum range and signal quality of 

common perception sensors 

Light conditions 
e.g. glare, darkness 

Reduces maximum range and signal quality of camera 

systems 

Obstructions 
e.g. dirt or ice, surrounding buildings, tunnel 

Interferes with or reduces maximum range and signal quality of 

common perception sensors 

Road design 
e.g. sharp curves, intersections, degraded lane 

markings, roadworks, holes and bumps 

Affects lane detection of camera systems, impacts system 

decision capabilities 

Traffic & Road participants 
e.g. vehicle cutting-in, dense traffic, 

vehicle standing still in lane 

Interferes or reduces maximum range and signal quality of 

perception sensors, impacts system decision capabilities 

INTERNAL CONDITIONS  

System decision and control 
e.g. speed out of range, excessive steering torque 

Features might only function under certain ranges or within 

other system limitations (e.g. acceleration, steering torque) 

Hardware & Connectivity issues 
e.g. sensor unavailable, hardware issues 

Impacts sensors operability or system decision capabilities 

 
 
A description of some use cases is provided below in which factors from Table 4 and their 
functional limitations are illustrated: 

A. Roadwork (road design): a roadwork is a possible location for an unstructured road 
network with suboptimal lane markings (in the form of remaining of old lane markings or 
absence of lane markings). Such condition will affect the lane detection of the camera 
system, directly influencing the perception / localisation of the ego vehicle and the decision 
making capability of the DAS. However, there are roadworks with a structured road 
network, so all roadworks do not affect the automation performance equally. Moreover, not 
all roadwork locations might be available from the external sources of context information 
to be used by the automation state module, affecting time to discovery. 

B. Vehicle standing still in lane (traffic and road participants): a vehicle standing still in lane 
can directly affect the decision making component if there is no possibility to overtake the 
stationary vehicle (sensors, actuators and perception are generally not affected unless the 
stationary vehicle is revealed suddenly at high ego vehicle speed). Such situations will 
require the driver to take over or the system to eventually activate collision avoidance 
features. 
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C. Excessive steering torque (system decision and control): the automation could be limited in 
the amount of steering torque it supports the driver with (for the lane centering assistance) 
which could be exceeded while in a sharp curve or a roundabout, for instance. Such a 
situation can lead the decision making component to deactivate the steering assistance. 
Predicting the steering torque (e.g. by identifying curves on the route in relation to the 
predicted vehicle speed), could help determine locations where the steering torque 
threshold could be exceeded. 

 
There are as previously mentioned, two types of factors, internal and external: 

§ Internal factors that originate for instance from sensors’ hardware issues or sensor 
unavailability. Internal factors concerning components such as the perception or 
planning/control, can also be responsible for degraded performance and are addressed in 
Chapter 5 as part of the automation performance self-assessment. 

§ External factors, which can cause the automated driving system to reveal its functional 
limitations by reaching ODD limitations through e.g. heavy precipitation, sand storms or 
sharper curves than expected. External factors may also be things such as lack of lead 
vehicles, bad lane markings, or other aspects related to the driving context.  

 
Considering each factor independently does not indicate how the contribution of other factors, 
which may occur simultaneously, is affecting the automation. It is, for instance, unknown how a 
section of “roadwork” affects the automation in combination with differing weather conditions, light 
conditions or traffic densities. It is therefore necessary to assess the factors as a combined entity 
forming the driving context, as defined in introduction of this chapter, which will be used when 
estimating the time to automation (un)fitness in chapter 6. Building such driving context is 
developed in the following section. 
 

4.3. Driving context 
Assessment of the driving context involves the collection of pieces of external information needed 
to assess each factor’s relevance and weight for determining the capability of the DAS. 
 
Building the driving context is achieved in three steps: 

a. Identify the relevant factors believed to affect the automation system, 
b. Identify the necessary pieces of context information needed to assess the current state for 

each factor, the whole forming the driving context. Additionally, assessing the confidence in 
how these pieces of context information are obtained is also valuable for discussing the 
effectiveness of the predictions, 

c. Finally, to make predictions of the driving context ahead, the automation state module will 
be helped by knowing the route. 

 
a. Identify the relevant factors: 

Let’s assume that the relevant factors are the three use cases described in the previous section: 
roadwork (A), vehicle standing still in lane (B) and excessive steering torque (C). This simplification 
is made only to demonstrate the principles for building a driving context but still could be used to 
generalise to larger driving context. 
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b. Identify the context information: 
The pieces of context information are mainly extracted from external sources (cloud-to-vehicle or 
vehicle-to-vehicle) to the automation system such as an online service providing weather forecasts. 
The pieces for the three use cases are described in Table 5. 

Table 5. Factors and associated context information 

Factor Piece of context information Source 

A. Roadwork Roadwork location Known locations e.g. using a HD map(1) 

B. Vehicle standing still in lane Vehicle location Known locations by cloud-to-vehicle or vehicle-to-vehicle 

communication 

C. Excessive steering torque Steering torque measurement Prediction of steering torque could be inferred from: 

+ Predicted speed (see next row) 

+ Road curvature using HD map 

 

However, such prediction might not be reliable enough 

since steering torque also depends on other 

characteristics than speed and road curvature. 

Alternatively, known locations of possible exceeding 

could also be used: 

+ Sharp and S-curves using HD map 

+ Roundabouts using HD map 

Ego speed Predicted speed at location using 

1. Traffic speed forecast API 

2. Speed limit from HD map 

Steering torque threshold Available from the DAS documentation 

(1) The term “HD map” is a cloud-to-vehicle service which provides enriched map information about the road network. 

 
Some of the sources of context information shown in Table 5 may be difficult to obtain with a good 
enough level of confidence for the following reasons: 

§ The source might be inaccurate. Roadwork locations could be available reliably for lasting 
roadworks whereas mobile or temporary roadworks might not be available consistently. 

§ Weather forecasts can provide information such as “chance of rain: 40 %”, so how to 
assess if it is going to rain or not? 

§ Some pieces of information can be estimated from other pieces, thereby degrading the 
overall confidence of the estimation because of the method or assumptions used to derive 
the estimated pieces, like for the steering torque 

 
c. Additional inputs: 

Additionally, the automation state module might need to know two other inputs to predict the driving 
context ahead: 

§ The planned route, 
§ The (estimated) time to reach any location on the route. 

 
Without any planned route, the automation state module is limited to the immediate options for 
driving, for instance by the next intersection ahead, since multiple paths can be taken afterwards. A 
lack of a known, planned, route would make the development of this module much more difficult 
and is best left for a later stage. For the purpose of this deliverable, therefore, we will hereafter 
always assume that the system has access to a known destination with a defined route, as it is 
essential in order to predict the driving context with a larger time horizon.  
 
Another major piece of information needed is the predicted time to reach any location on route. 
Knowing the distance to a certain location on route, e.g. the next occurrence of a roadwork, is 
useful information to predict the distance to a location that may lead to degraded performance. 
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Determining the time when the ego vehicle will reach for example a roadwork is complex as it 
depends on the ego speed along the route, itself dependent of the driving style as well as the traffic 
conditions. One possible solution is to subscribe to an online service which provides an estimated 
time to arrival at a specific location on route, usually using traffic speed collected from other users 
reporting to the service, and which represents an average time over several users. This might 
therefore differ from what will be observed by the ego vehicle. Another method, using HD map 
only, could be to extract the speed limit on the road segments to compute a lower bound of the 
estimated time to reach the roadwork (assuming the driver does not exceed speed limits). With this 
method, the estimation would likely be less accurate than using the online service, but it would give 
the shortest time to reach the location. Therefore, this could be employed as a conservative 
approach. Both methods are relevant depending on the strategy considered by the automation 
state module. 
 

4.3.1. Predicting the driving context 
The prediction of the driving context is an essential part of the automation state module in 
estimating the time to automation (un)fitness which will be described in chapter 6. 
 
Developing such driving context prediction does come with challenges in finding the relevant 
pieces of context information, possibly combining them to derive other pieces, and assessing the 
confidence in these predictions. Associated methods will be developed and evaluated further 
during the implementation of the automation state module. 
 
The prediction of driving context is used in the worst, likely and best-case scenarios of the outputs 
of the automation state module. Confidence or probability measures that certain conditions will 
occur, will be used in order to make the distinction between the different scenarios. For instance, if 
the weather forecast along the route is “chance of rain: 40%”, the driving context for the worst case 
could consider heavy rain, the likely case could assume light rain whereas the best case will 
presume it will not rain. Again, the exact logic for this cannot be determined at the present stage. 
Those decisions will be made when defining methods, testing and validating their implementation, 
as part of the development of the automation state module. 
 
Internal factors such as hardware failures, which are not part of the driving context, cannot be 
predicted although they might be detected by the automation system. In the case that such internal 
factors would appear, it may or may not be known by the automation state module. 
 
Lastly, a proposal for the relevant context information that could be used to predict the driving 
context is described in Table 6. It contains the pieces of information provided above for the three 
use cases as well as information sources required for other factors in Table 4 that have not been 
detailed previously. 
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Table 6. Driving context information 

Piece of context information Source 

Road attributes: 

Road type 

Number of lanes 

Lane width 

Speed limit 

Known attributes by HD map 

Location of road items: 

Intersections (on-ramps, off-ramps, 

weaving sections, roundabouts) 

Sharp and S curves 

Tunnels, tolls 

Roadworks 

Known locations by HD map 

Weather conditions Weather forecast API 

Ambient light conditions Ambient light conditions API 

Traffic density and speed Traffic forecast API 

Vehicle standing still in lane location Known locations by cloud-to-vehicle or vehicle-to-vehicle communication 

Ego speed Predicted speed at location using 

1. Traffic speed forecast API 

2. Speed limit from HD map 

Steering torque Prediction of steering torque could be inferred from: 

+ Predicted speed 

+ Road curvature using HD map 

Heading Could be derived from GPS trace in planned route 

Steering torque threshold Available from the automation system 

Other system limitations 

(road type, speed range) 

Available from the automation system 
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5. Assessing automation performance 
This section discusses automation performance assessment with the focus on self-assessment. 
The objective is to define performance self-assessment measures, which could be used by the 
automation state module to estimate the automation fitness and understand the capabilities and 
limitations of that assessment. 
 

5.1. Automation availability and assessment basics 
To determine whether a driving automation system (DAS) is available, the system will assess its 
own ability to drive in every given second. Activation is only permitted when sufficient information is 
available. Whenever the system is then switched on, it is continuously evaluated on whether it has 
enough sensor inputs, and will disengage when sensors or sub-systems are failing to provide 
required information. 
 
The most basic version of system self-assessment will be based on current sensor and sub-system 
information. To know when supervised driving assistance fails or unsupervised driving will come to 
an end, the system will also need to have a continuous Operational Design Domain (ODD) 
assessment. Thus, determining what the system knows about itself and its limitations is an 
important aspect when designing an availability measure.  
 
The availability is not necessarily the same as the system performance. Availability will be 
dependent on the sanity check of the system itself, and its assessment of whether it is getting 
enough reliable information to start. A system may be available, but at the same time according to 
the user not perform very well.  
 
A supervised system may decide it is available based on the here-and-now information, but an 
unsupervised system will need to be much more certain of its future performance. What is 
classified as ‘reliable’ performance as well as automation fitness will always need to be related to 
the actual system in question. Systems have different performance depending on their design – not 
always possible to relate on the same scale. Thereby, what is ‘reliable’ performance will always 
need to be defined and qualified within an ODD before trying to assess system ‘degradation’. In 
addition, reliable system performance will be dependent on the intended capabilities of the system, 
where performance will be different between different set-ups. 
 
One precondition for reliable performance is that the conditions that matter for the system in 
question are possible to detect. Any system will therefore need to detail what it can be expected to 
detect and what it cannot. In a very basic sense, this means that to assess automation 
performance we will need to detect as many unknown unknowns (to the DAS) as possible. As an 
automation system is designed today, less than perfect system status means the system will try to 
perform anyway until it can’t, and when engineers see the issue they try to fix it for the next version 
of the system. Detection of bad performance is generally done through annotating actual drives in 
the real world.  
 
Thus, the first and most important factor for reliable performance (“GOOD” performance as detailed 
in Section 2.1) is the current conditions and stability in road conditions including lane markers, light 
conditions, traffic, and weather. There will always be some uncertainty about system performance 
when conditions change, and whether the system is able to detect that change or not.  
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5.2. System information needed for assessment 
Some items are necessary to know in order to monitor the DAS capabilities: 
§ What are the operational limits of the system (torque, braking, accelerating)? 
§ Does the system have a geofenced ODD? In that case, what is it? 
§ Where are the sensing limitations of the system? (Distance, angles outside the vehicle, 

weather, light conditions etc.)  
§ What infrastructure can the system or sensors identify? (Roadworks, temporary markings, etc.)  
 
System limitations can be annotated during test drives over time to feed into algorithm 
development. A continuous monitoring of automation capabilities requires some kind of input into 
the system that it is performing well or less than well according to a driver, and here personal 
preference will play a large role.  
 
This could be done by a driver, annotating somehow that they are disengaging the system due to 
bad performance during a drive. This would help the system distinguish between deactivations and 
overrides because the driver wishes to do so, and deactivations or overrides due to worsening 
system performance in the traffic conditions.  
 

5.3. Estimating current automation performance 
As discussed in Section 2.1, the measure for automation performance is the number of driver 
overrides (or system deactivations or system fallbacks if applicable) per hour. As these measures 
need to be recorded over extended periods of time, they are not an optimal measure to calculate 
current and upcoming performance.  
 
When the driver overrides the system, it can be due to an uncomfortable or (perceived) unsafe 
behaviour. These system behaviours in turn are the result of either too little or too much 
acceleration or steering for a certain context. It could be said that if the automation fitness is at its 
highest level, there is by definition no unwanted behaviour, and no driver interventions are needed. 
However, there may of course be interventions that are not related to automation behaviour as 
well, such as driver preferences. By studying driver interventions, lower levels of automation fitness 
could be estimated by looking at the factors that cause automation behaviour that leads drivers to 
intervene (that is, BAD performance). The behaviour of a DAS is the result of two main elements, 
perception (how well can the system perceive the world around it) and decision logic (given a view 
of the world, what action should be taken).  
 
Given perfect perception, the implemented decision logic determines the ODD of that particular 
DAS. For example, regardless of whether a red traffic light is detected or not, if the decision logic 
does not consider that input, it will not stop for it. In this case, traffic lights are not part of the ODD 
of the DAS. If the system was designed to stop for red traffic lights, but the perception system 
failed to detect that there was a traffic light, or that it was red, this would cause a ‘failure’: the 
system would not brake the car to a stop and thus it would not behave as designed.  
 
As the fitness to drive of the automation is judged by the rate of failures, or the rate of needed 
driver interventions or overrides, estimating the current automation fitness can be achieved at least 
partly by looking at the current perception performance, and the factors that influence it. This 
definition also entails that some automation systems may never get a high automation fitness 
rating in any ODD, as drivers consider their performance to be poor most of the time. There is 
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always a higher chance of the driver having to intervene in scenarios where systems have not 
been developed to identify and handle specifically. This lack of performance cannot be estimated 
any other way than by iteratively test-driving and collecting examples for every specific system. 
 

5.3.1. The influence of perception 
In the example above the perception system completely missed detecting the traffic light and its 
colour. Similarly, the DAS could fail to detect a nearby pedestrian or a stationary vehicle. The 
opposite could also be true, the DAS could detect a pedestrian or vehicle where there is none. An 
important factor therefore is the “Perception Confidence”: how sure is the DAS that the perception 
is true, that an object, lane marker, or other detection exist where detected and how sure is it that 
none exist where none are detected.  
 
Another scenario to this example would be a late detection, meaning the traffic light was detected 
but at a point where hard braking would be needed in order to stop for it. Therefore, the current 
“Perception Range” (the distance at which the world can be perceived) versus the “ideal” range 
(that the system was designed for) is an important factor for automation fitness.  
 
The proposal in this report is therefore to estimate the current automation fitness by creating a 
measure for perception range and perception confidence. If deemed necessary, other internal 
states could be added during development. 
 

5.3.2. Perception Range 
The perception range can be explained as “how far can the DAS perceive the world”. In an ideal 
situation with clear skies, perfectly functioning sensors and low traffic density, the DAS should be 
able to detect the road and other traffic users around it at a long enough distance to make accurate 
decisions on what to do. For example, detecting an upcoming curve with the road bending to the 
right gives the DAS ample opportunity to plan a smooth path following the road. Conversely, a very 
short range of road estimate means a curve could suddenly pop up requiring an uncomfortable 
amount of steering or braking to adjust for the curvature. In other words, a perception range close 
to the ideal range that can be expected from the sensors should be one indicator for a high 
automation fitness. 
 
The perception range itself can be estimated by the furthest distance detection of any sensor that 
can be fused into usable and reliable road or object data. An example could be a lane marker 
detected at 50 meters in front of the vehicle and used by the perception fusion system to get a road 
model. Another example would be a cluster of radar detections that are fused into an object 
detection at 100 meters. Given a detection in the ego-vehicle reference frame, at longitudinal 
distance ! and lateral distance ", the sensor range # can be computed as:  
 

#!"#!$%	' = max	(*!() + "()	, …	, *!*) + "*)) 
 
As different sensors are impacted differently by context and environmental factors mentioned 
earlier in Chapter 4, a conservative estimate of perception range could be made by instead using 
the shortest of the fused perception ranges (road, objects or free space, for example).  
 

#+"%,"+-'$# 	= min	(#!"#!$%	(, … , #!"#!$%	*	) 
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5.3.3. Perception Confidence 
The perception confidence is the measure of how sure the DAS perception system is of the 
presence or absence of a detection. Both are important and cause two different types of false 
behaviour: false positive and false negative behaviour. In the case that an object does not exist, 
but the perception system reports one, it can cause unnecessary braking and/or steering, which 
would be called false positive behaviour. The connected confidence measure is then the True 
Positive Confidence. In case an object is not detected the DAS would not steer to avoid and/or 
brake for it if necessary, which would be false negative behaviour. The connected confidence 
measure for that is the True Negative confidence. 
 
For the first measure of perception confidence, the True Positive (TP) confidence, the sources of 
detection will be looked at. Given that the DAS has access to different sensors, the more sensor 
detections confirm an object, the higher the confidence in the detection of that object is. If all 
reported objects are confirmed by all available (and applicable) sensors, then the TP confidence 
will have maximum value. The more objects reported and confirmed by less than all available 
sensors, the lower the measure will be, as the chance of false positive behaviour rises. For object 
1, confidence 2./,' will be:  
 

2./,' =	
3,$#1'%2'#3	!"#!$%!,'
44++5',465"	!"#!$%!,'

	
 
And overall confidence 2./ for total number of objects 5: 
 

2./ =	
∑ 2./,'2
'78
5  

 
The second measure, the True Negative (TN) confidence, is the inverse of the number of 
dissociated detections; those detections made by one or more sensors but deemed false and 
therefore discarded by the ADS perception fusion system.  
 

2.9 =	
1

1 + 8( ∙ 4:'!,4%:":
 

 
Where 8( is a tuning parameter to adjust for the noisiness of a certain sensor, and should be set 
based on ground-truth data collection. 
 
These two measures are inversely related to each other, as the fusion system can be tuned to 
discard a lot of low confidence detections. This would result in a high true positive confidence and 
a low false positive behaviour rate, but increase the chance that an actual true object is missed. 
Therefore, it makes sense to take the convolution of these two measures as the overall measure 
for perception confidence C: 

2+"%,"+-'$# = 2./ ∙ 2.9 
 

5.4. Estimating future automation performance 
Decision capability can only be calculated if using intrinsic knowledge of the system design, and if 
those situations or events that the system is not designed to handle can be derived directly from 
sensor information or indirectly through vehicle to cloud (V2X) such as mapped data of traffic 
congestion or infrastructure.  
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Given a system which is not designed to handle close cut-ins from on-ramps, the proximity of an 
on-ramp including the statistics on how many close cut-ins happen there (based on for example 
traffic density) can be used to estimate the chance of a driver override at such a location. Here 
personal preference will play a role as to the degree at which drivers feel the system needs to be 
overridden or not. 
 
The example of cut-ins from on-ramps also clarifies the need for a statistical approach to estimate 
the future automation performance. The automation performance estimation, in turn, relies on the 
prediction of the traffic situation (traffic context) as it will be perceived by the DAS in a near future, 
and such prediction will have some limitations. In the MEDIATOR project, the driving context 
prediction is based on the driving context as detailed in Chapter 4, which will provide a limited and 
probabilistic representation of that traffic situation. The driving context data may provide the next 
on-ramp location and the traffic density/speed to the automation state module. This information is 
however not sufficient to understand also the lane markings at the junction with the driven road, the 
curvature of the on-ramp, or the location and speed of the other road participants. 
 
A very accurate descriptive representation of the driving context might however cause other issues. 
High complexity will make it difficult to predict if the DAS will be adversely affected. The estimation 
of driving context therefore needs to be extended carefully, not taking too much into account at the 
beginning.  
 
Consequently, in Chapter 6 a generic statistical method is introduced which involves data collection 
to assess the automation fitness for various states of the driving context. This will allow the 
automation state module to estimate a probability of the DAS to be fit or unfit to drive in the near 
future. 
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6. Automation fitness 
The objective of this chapter is to describe a methodology to measure and predict an estimation of 
the automation fitness used to derive the outputs of the automation state module such as the various 
time to automation (un)fitness for each of the worst, likely and best cases and for the various 
automation levels used in MEDIATOR (CM, SB and TtS). 
 
The estimation of the automation fitness is similarly based on estimating an automation fitness score 
on an automation fitness scale: 

§ The AF scale is defined as a number of occurrences of system deactivations, fallbacks or 
overrides per time unit, 

§ The (continuous) measurement of the AF score is based on the perception confidence 2 and 
range #, which act like the amplitude of the waves on the seismographs (Wikipedia 
contributors, 2021). However, no mathematical formula is available at this time to use the 
perception indicators as input to obtain a fitness score. Instead, the automation fitness scale 
will be developed through later data collection and the correlation of the perception indicators 
with the occurrences of system deactivations/overrides/fallbacks, 

§ Much like the Richter scale, the AF scale will need to be unbounded, at least in the beginning, 
as we do not yet know what a “maximum” on the scale would be. 

§ The estimation of the automation fitness score is then used to predict the time to automation 
(un) fitness using cut-off thresholds to be determined later. 

 
The methodology relies on the definition of BAD and degraded performance provided in chapter 2, 
the prediction of the driving context as detailed in chapter 4 and the monitoring of the automation 
perception confidence 2 and range # defined in chapter 5. 
 
The methodology comprises two phases: 

§ Development phase: using collected data, the goal is to correlate both the perception 
indicators and the driving context with the number of occurrences of system 
deactivations/overrides per time unit normalized on an automation fitness scale, 

§ Implementation phase: using knowledge of these correlations, the goal is to estimate an 
automation fitness score on the scale using both online observations of the perception 
indicators and online observations / predictions of the driving context. The estimation of the 
automation fitness score is then used to predict the time to automation (un)fitness using cut-
off thresholds. 

 
The methodology can be applied to both supervised and unsupervised systems with some 
exceptions described in Section 6.3, as it relies on common foundations (driving context, 
perception indicators and system deactivations/overrides). Development of the module will only be 
done for supervised systems, as no unsupervised systems are available in Europe to date (April 
2021). Instead, assumptions will need to be made for unsupervised systems. 
 

6.1. Automation Fitness Scale 
The automation fitness scale is a rating of how well the automation is doing in relation to a traffic 
situation. The rating can be represented e.g. from 1 to 5 with each level corresponding to a varying 
number of occurrences of system deactivations/overrides (or BAD performance as defined in 
chapter 2.1) per a certain time unit, as illustrated in Figure 6. The higher the value, the better the 
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automation performance. It would also be possible to include the degraded performance or the 
factors correlating with BAD or degraded performance. The exact scale as detailed below is one 
example, and the actual development will need to be iterative and subject to change. The 
“maximum” performance as illustrated below will also need to be adapted to each automation 
system, so that any updates that improve performance can be accommodated by extending the 
scale.  
 

 

Figure 6. Automation fitness scale representation 

 
Defining the scale (rating values and the number of occurrences per category, as well as the 
factors associated with them) is done after the data collection during which the occurrences of 
system deactivations, fallbacks, and overrides will be annotated. 
 

6.2. Estimating automation fitness score 
After performing the data collection, a correlation analysis needs to be performed in order to 
estimate the automation fitness (AF) score on the scale. The correlation analysis will be performed 
independently for both the observed perception indicators and observed driving context with the 
occurrences of system deactivations/overrides/fallbacks for both types of inputs. Alternatively, the 
observed driving context could also be correlated with the perception indicators as an intermediate 
step of degraded automation or not to set a correlation with an AF score. 
 
At this stage, the current AF score will be estimated by online observations of both perception 
indicators and driving context. However, the estimation using perception indicators, taken at the 
core of the system itself, is possibly more representative of the actual present automation 
performance than the estimation based on driving context. Nevertheless, predicting the future AF 
score can only be achieved using the driving context. 
 
The estimation of the AF score in the automation state module therefore consists of two parts: 

§ Estimating the current AF score with the online observation of the perception indicators, 
§ Predicting the variation of AF score (relative to the current AF score estimation) with the 

online observation and predictions of the driving context. 
 

6.3. Estimating time to automation (un)fitness 
The time to automation (un)fitness can be predicted using the current AF score, its predicted 
variation due to the extent of degraded automation fitness and a cut-off threshold that sets the 
boundary between fitness and unfitness. 
 
As an example in Figure 7 below, the current AF score is estimated at 4 (in yellow) using the real 
time observation of the perception indicators. The driving context ahead is identical to its real time 
observation except for two sections where the traffic density is expected to vary from no to 
moderate traffic density followed later on by a section of roadworks (black icons). Using the 

5 

1 

Maximum performance 
Rare occurrences of system deactivations/overrides/fallbacks per X hours 
… 

No performance 
Frequent occurrences of system deactivations/overrides/fallbacks per X hours 
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predicted driving context and its relationship to variations of AF score, the AF score can be 
estimated along the route (in green) with a decrease of AF score of -1 and -3 in the sections of 
moderate traffic and roadworks respectively. TTAU can then be estimated as the shortest time 
when the predicted AF score becomes lower than a predefined cut-off threshold (in red). 
 

 

Figure 7. TTAU prediction using automation fitness score 

 
There are a few exceptions to this method:  

§ Worst case TTAU in supervised driving (CM): Given that any DAS up to and including 
SAE level 2 gives no guarantee on positive system performance (it will always rely on the 
driver to supervise the system) the worst case TTAU that can be expected in CM mode will 
always be 0 seconds, 

§ All cases in unsupervised driving (SB and TtS): In a SAE level 4 ADS the system is by 
definition always fit to drive within its ODD, both for handling the DDT, the monitoring and 
the fallback. This means that the TTAU would always be infinite. Practically however, a 
driver will prefer to take over from the system before a fallback happens, for example at the 
end of the ODD. As previously explained, we will also consider SB as a subcase within 
TtS, where the driver is not asleep but where the ODD is coming to an end and fallback will 
be initiated. Therefore we will adapt the definition of TTAU in SB and TtS to reflect the time 
until fallback rather than time to automation unfitness. 

 
In Figure 8 below, we illustrate the estimation of TTAU for the various scenarios (worst, likely and 
best cases) for the CM level. In this example, it is assumed that the automation state module 
receives the information that a dense traffic is predicted ahead for a short duration (represented 
with the three black vehicles) followed by a roadwork later on. The TTAU predictions are built as 
follows: 

§ TTAU worst case is always equal to zero second (independently of the current or 
predicted AF score estimation), 

§ TTAU likely case could consider the traffic density prediction “as is”, i.e. taking into 
account the dense traffic in the middle part, 

§ TTAU best case could consider a more favourable (or optimistic) traffic prediction, such as 
light or moderate traffic density, which would lead to a lower variation of the AF score. 
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Figure 8. TTAU prediction for continuous mediation level (CM) 

 
Table 7 summarises the TTAU estimations for the worst, likely and best case scenarios and for all 
three MEDIATOR automation levels. 

Table 7. TTAU estimations for the worst, likely and best case scenarios. 

TTAU 
estimation 

Certainty 
level 

Underlying 
assumptions 

Supervised 
(CM) 

Unsupervised 
(SB, TtS) 

Worst case High Conservative 0 s (1) Function of AF score 

Likely case Medium Pragmatic Function of AF score 

Best case Low Optimistic Function of AF score 

(1) As stated above in the same section, TTAU estimations in the worst case for CM is  

always considered to be zero second as the driver is always in the loop. 

 
 

6.4. Other MEDIATOR relevant outputs 
Two other outputs can also be derived while doing the automation fitness score estimation: 

§ The automation state class as the reason for upcoming change in automation availability, 
like a change from fitness to unfitness and conversely. See MEDIATOR deliverables 
Christoph et al., 2019 and Cleij et al., 2020. 

§ The appropriate intervention type defined as a possible way to improve the automation 
fitness by increasing TTAU. See (Christoph et al., 2019). 

 
Both outputs can be used by the HMI module to improve system transparency to the driver and 
possibly to require an action from the driver, in case the appropriate intervention type requires the 
driver rather than automation to act. 
 

6.4.1. Automation state class 
To compute the automation state class, it might be possible to identify which piece of the driving 
context information weighs the heaviest in a variation of the automation fitness score (using 
knowledge on the correlation built with the data collection). In the simple example in Figure 7, we 
assume that the driving context is composed of weather conditions and roadwork locations. As 
there is a roadwork location ahead and the weather is unchanged, the decrease in automation 
fitness score estimation from 4 to 1 is therefore linked to the roadwork in the system logic. 

5 

1 Time ahead 

4 -1 
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2 
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(likely) 
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Cases might not always be so clear-cut though. It is likely that some roadworks will not constitute a 
problem for the DAS in good visibility, but at night, in poor visibility, or without a lead vehicle they 
might. The automation state class in this case might therefore need to be something more abstract 
such as the probability of “bad perception”, “bad lane markings” and “roadworks”. 
 
In any more complex case where there has been no previous decision of what external context 
constitutes the issue for the DAS, the automation state class will probably become “end of ODD”. 
The automation state class outputs and timings must be developed further for improved messaging 
to the user, and in collaboration with the HMI component and decision making component of the 
Mediator system. 
 

6.4.2. Appropriate intervention type 
As the automation state module knows when (TTAU/F) and why (automation state class) there is 
an upcoming change in automation fitness, it can propose possible actions it thinks are suitable to 
take to improve the automation fitness. 
 
As stated in Section 4.3.3 in (Christoph et al., 2019), the Mediator system can propose to activate 
or deactivate the DAS depending on whether the system is becoming fit or unfit to drive. 
 
In the case of the system becoming unfit, other alternative actions could possibly increase the time 
during which the automation remains fit (i.e. TTAU). In the example above about the roadwork, 
these actions an others could be appropriate: 

§ “Reduce speed” to increase the time to reach the roadwork location, 
§ “Change lane” if the roadwork is known to only affect the current lane, 
§ “Take a different route” to avoid the roadwork, having checked beforehand that the 

alternate route leads to a prolonged fitness, comparatively. 
 

6.4.3. Key Safety Indicators 
The automation state module outputs time to automation fitness and unfitness, automation state 
class, current automation level and relevant context information. To assess the safety impact of the 
current automation fitness score, key safety indicators (KSI) will be used.  
 
The KSIs basically constitute the same as the markers for degraded performance (like driving over 
a lane marking one should not), as there is a need to have an objective measure not occluded by 
hindsight. The markers for degraded performance as annotated by drivers and observers in the 
data collection can therefore be used as KSIs in conjunction with annotations of the actual driving 
context. For example, swerving slightly in lane is not unsafe if there is no traffic, but may be unsafe 
if there is heavy traffic and very narrow lanes.  
 

6.5. Summary of the automation fitness score assessment 
The estimation of the automation fitness score relies on various elements: 

§ The prediction of the driving context, 
§ The estimation of the current automation performance, 
§ The automation fitness scale, 
§ The correlation of the first two with the automation fitness score. 
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The capabilities and limitations of both the prediction of the driving context and the estimation of 
the current automation fitness score are detailed in their respective chapters (4 and 5). By 
transitivity, the correctness of the automation fitness score estimation is also affected by the 
accuracy of its inputs. 
 
Additionally, the definition of the automation fitness scale as well as the correlation relationships 
are highly dependent on the significance of the data collection and so is also the estimation of the 
automation fitness score. 
 
To build a very accurate estimation of the automation fitness score would require an extensive data 
collection to obtain a lot of exposure in diverse driving contexts when the driving automation 
system is affected by various factors. This is assuming a highly accurate prediction of the driving 
context and estimation of the current automation performance. For a reliable correlation for a large 
number of traffic situations and contexts, there is not only the need to be able to identify such traffic 
situations through sensing and sensor specifications. There is also a need to collect extensive data 
with multiple combinations of weather conditions, traffic conditions, road type, light conditions, 
roadworks, and so on. Such data collection would also contribute a number of occurrences of 
degraded and BAD automation performance to determine the automation fitness scale. 
 
However, a data collection of such significance is beyond the possibilities of the MEDIATOR 
project. Nevertheless, to have a working automation state module for the MEDIATOR project, in 
particular for the vehicle prototype evaluation happening later in the project, we can focus the data 
collection on the traffic conditions in which the vehicle prototype will be evaluated. 
 

6.5.1. Evaluation of the correctness of the outputs 
The automation state module outputs time to automation fitness and unfitness, automation state 
class, current automation level and relevant context information. To assess the correctness of 
these outputs, key performance indicators (KPI) will be used. 
 
For instance, time to automation (un)fitness could be described as a classification problem on 
whether the automation state module has correctly predicted a change in automation fitness versus 
the observation therefore involving standard metrics based on true/false positive/negative. 
Moreover, assuming that a change in automation fitness was correctly predicted by the automation 
state module at a certain location in the planned route, it could also be of interest to evaluate how 
good was the time prediction before reaching the location compared to the time it actually took. As 
described in Chapter 4.3, the estimated time to reach a certain location is dependent on multiple 
factors such as the traffic speed provided by an online source. Making such estimated time 
assessment therefore involves to also assess the accuracy of the various pieces of context 
information used to build the driving context. 
 
Since the methodology to estimate the automation fitness detailed in this chapter is new, the KPIs 
will be developed in more details during/after the data collection part of the development of the 
automation state module. The analysis of the collected data to build the correlations between the 
automation internal states, driving context and the automation fitness (from which the outputs of 
the automation state module are derived) will provide insights that will drive the definition KPIs. 
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7. Concluding remarks 
7.1. Main conclusions 

This deliverable elaborates on the concepts and foundations for assessing the automation fitness 
of a driving automation system to be developed and implemented in the automation state module 
of the Mediator system. 
 
The proposed framework relies on two main aspects. The first is the assessment of the current 
(real time) automation fitness which involves the creation of measures (indicators) based on 
information regarding the internal state of the driving automation system. The main focus lies on 
the sensors and decision-making software inside the automation module since automation fitness 
will be adversely affected if these fail or begin to degrade. The second is the assessment of the 
future (predicted) automation fitness, using information on the driving context in a near future, 
especially environmental conditions, road and route characteristics. These factors can affect the 
operation of various components of the driving automation system, such as sensors, which in turn 
will adversely affect the automation fitness. The deliverable also provides a review of the types of 
factors that can compromise the sensor function as well as known functional limitations of a range 
of automotive perception sensors. 
 
The notion of automation fitness score is introduced, which allows the possibility to quantify the 
automation fitness on an automation fitness scale built on the rate of system 
deactivations/fallbacks/overrides. The deliverable proposes a methodology to create estimates of 
the current and predicted automation fitness score by examining the relationships between the 
automation self-assessment measures, the driving context and the automation system behaviour 
using collected and annotated data. These estimates then provide input to the automation state 
module to enable it to create the fitness score, to assess the future automation performance. This 
is achieved through the creation of a predictive metric derived from the fitness score, Time To 
Automation (Un)fitness, estimate the worst, likely and best case scenarios for various automation 
levels. 
 

7.2. Open points to address during development 
The deliverable focuses on the elaboration of the foundations for the automation state module. 
These concepts must therefore be addressed further during the actual automation state module 
development, in particular for the establishment of the correlation relationships between the inputs 
of the automation state module and the estimation of the automation fitness score. 
 
The driving context as defined in Chapter 4, is a collection of various information sources mainly 
used in the prediction of the estimated automation fitness score for the worst, likely and best case 
scenarios. Understanding the accuracy and reliability of the sources that will be considered by the 
automation state module is critical to determine the confidence in this prediction and its derived 
outputs such as time to automation (un)fitness.  
 
The estimation of the current (real time) automation fitness score is based on performance self-
assessment indicators such as the perception range and confidence defined in Chapter 5. Further 
work will need to be done to assess the effectiveness of such indicators, make adjustments in their 
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definition if needed as well as define other indicators if relevant to improve the assessment of the 
automation performance.  
 
The definition of the automation fitness scale and the threshold used for characterising the 
automation as fit or unfit, as introduced in Chapter 6, will evolve during the development phase of 
the automation state module to adapt for instance to the size of collected data and to the statistical 
methods used to determine the correlation relationships. As stated in Section 6.5.1, key 
performance indicators will also be developed in more detail during the development phase of the 
automation state module. 
 

7.3. Recommendations for the driver 
The development of an effective mediator-type system needs to establish some recommendations 
to drivers whether they are the human supervisor or constitute the unsupervised automation 
system, so that the Mediator system can be as supportive as possible. These recommendations 
include but are not exclusive to: 

§ Drivers or the driving automation system should comply with the speed limit or lower, 
§ Drivers must input into the Mediator system where they are going and the route they plan 

to use. 
§ More recommendations may follow during the development phase. 

 

7.4. Functional requirements for the automation state module 
The functional requirements define the function of the system and its componentsFout! 
Verwijzingsbron niet gevonden. summarize the functional requirements of the automation state 
about fitness to drive, and are based on the work described in this deliverable. These functional 
requirements (see Table 8) provide input to guide the further design and development of the 
automation state module. 

Table 8. Functional requirements for the Mediator automation state module 

Functional requirements (software related) 

AUTOMATION STATE MODULE 

The system shall estimate worst, likely and best-case time to automation (un)fitness based on automation fitness estimates 

for the current driving context 

§ The system shall estimate the current automation fitness 

o The system shall estimate the current automation fitness score 

o The system shall access relevant information from the automation system to estimate the current 

automation fitness score 

§ The system shall estimate the predicted automation fitness 

o The system shall estimate the predicted automation fitness score 

o The system shall access relevant external driving context information  

§ The system shall estimate when the driving automation system is unfit to drive 

o The driving automation system is deemed unfit to drive if it can no longer execute its defined dynamic 

driving task due to degraded automation performance (low automation fitness score) 

§ The system shall estimate the time to automation unfitness as the shortest time when the estimated automation 

fitness score becomes lower than a cut-off threshold 

§ The system shall estimate the time to automation fitness as the shortest time when the estimated automation 

fitness score becomes greater than a cut-off threshold 
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§ The system shall estimate worst, likely and best-case scenarios of time to automation (un)fitness using the 

reliability of its inputs, both internal and external 

The system shall determine the active automation level as either none, supervised (CM), or unsupervised (SB, TtS) 

The system shall determine the automation state class, i.e. the reason for an upcoming change in automation availability 

The system shall determine the appropriate intervention type, i.e. a possible way to improve the automation fitness 

The system shall extract and collect context relevant information from the driving automation system to the context module 

RECOMMENDATIONS 

Drivers shall comply with the speed limit or lower 

The automation state module shall know the planned route 
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